A method for solving nonlinear differential equations

Purpose – The purpose of this paper is to present a method for solving nonlinear differential equations with constant and/or variable coefficients and with initial and/or boundary conditions.Design/methodology/approach – The method converts the nonlinear boundary value problem into a system of nonlinear algebraic equations. By solving this system, the solution is determined. Comparing the methodology with some known techniques shows that the present approach is simple, easy to use, and highly accurate.Findings – The proposed technique allows us to obtain an approximate solution in a series form. Test problems are given to illustrate the pertinent features of the method. The accuracy of the numerical results indicates that the technique is efficient and well suited for solving nonlinear differential equations.Originality/value – The present approach provides a reliable technique, which avoids the tedious work needed by classical techniques and existing numerical methods. The nonlinear problem is solved wit...

[1]  A. Wazwaz Approximate solutions to boundary value problems of higher order by the modified decomposition method , 2000 .

[2]  Y. Cherruault A comparison of numerical solutions of fourth‐order boundary value problems , 2005 .

[3]  Ángel Martín del Rey,et al.  Faa' di Bruno's formula, lattices, and partitions , 2005, Discret. Appl. Math..

[4]  Lionel Gabet Modélisation de la diffusion de médicaments à travers les capillaires et dans les tissus à la suite d'une injection et esquisse d'une théorie décompositionnelle et application aux équations aux dérivées partielles , 1992 .

[5]  Feyed Ben Zitoun,et al.  A new algorithm for solving nonlinear boundary value problems , 2009, Kybernetes.

[6]  A. Beardon The Differentiation of a Composite Function , 1971, The Mathematical Gazette.

[7]  S. Khuri,et al.  An Algorithm for Solving Boundary Value Problems , 2000 .

[8]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1959 .

[9]  Salih Yalçinbas Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations , 2002, Appl. Math. Comput..

[10]  Ravi P. Agarwal,et al.  Boundary value problems for higher order differential equations , 1986 .

[11]  R. Kanwal,et al.  A Taylor expansion approach for solving integral equations , 1989 .

[12]  Esquisse d'une théorie décompositionnelle , 1996 .

[13]  D. M. Hutton,et al.  Optimisation - Mèthodes locales et globales , 1999 .

[14]  Y. Mahmoudi Taylor polynomial solution of non-linear Volterra–Fredholm integral equation , 2005, Int. J. Comput. Math..

[15]  Ernst Hairer Analyse II (Calcul Différentiel et Equations Différentielles) , 1999 .

[16]  P. Wynn A transformation of series , 1971 .

[17]  Warren P. Johnson The Curious History of Faà di Bruno's Formula , 2002, Am. Math. Mon..

[18]  L. Gabet,et al.  The theoretical foundation of the Adomian method , 1994 .

[19]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1958 .

[20]  Mehmet Sezer,et al.  On the solution of the Riccati equation by the Taylor matrix method , 2006, Appl. Math. Comput..

[21]  David J. Evans,et al.  Collocation approximation for fourth-order boundary value problems , 1997, Int. J. Comput. Math..

[22]  George Adomian,et al.  Transformation of series , 1991 .

[23]  Yves Cherruault,et al.  Application of the Adomian method for solving a class of boundary problems , 2004 .

[24]  Y. Cherruault,et al.  Convergence of Adomian's method applied to differential equations , 1994 .

[25]  Khosrow Maleknejad,et al.  Taylor polynomial solution of high-order nonlinear Volterra-Fredholm integro-differential equations , 2003, Appl. Math. Comput..

[26]  J. Baxley Nonlinear Two Point Boundary Value Problems , 1968 .

[27]  George Adomian,et al.  Solving Frontier Problems of Physics: The Decomposition Method , 1993 .

[28]  C.J.H. Mann,et al.  Optimisation Globale: Théorie Des Courbes α-denses , 2006 .

[29]  D. O’Regan Existence Theory for Nonlinear Ordinary Differential Equations , 1997 .

[30]  J. Riordan Derivatives of composite functions , 1946 .

[31]  Mehmet Sezer,et al.  A method for the approximate solution of the second‐order linear differential equations in terms of Taylor polynomials , 1996 .

[32]  Weiming Wang,et al.  An algorithm for solving the high-order nonlinear Volterra-Fredholm integro-differential equation with mechanization , 2006, Appl. Math. Comput..

[33]  Henri Berliocchi Modèles et méthodes mathématiques pour les sciences du vivant, by Y. Cherruault, Presses Universitaires de France - P.U.F., Paris, 1998, xi+299 pp., references (Pbk, 168 FF), ISBN 2 13 048978-8, 0246-3822 , 2000, Robotica.

[34]  Eugene M. Klimko,et al.  An algorithm for calculating indices in Fàa di Bruno's formula , 1973 .

[35]  Abdul-Majid Wazwaz,et al.  A reliable modification of Adomian decomposition method , 1999, Appl. Math. Comput..

[36]  Karim Ivaz,et al.  Numerical solution of nonlinear Volterra-Fredholm integro-differential equations , 2008, Comput. Math. Appl..

[37]  R. Temam,et al.  Inertial manifolds and slow manifolds , 1991 .

[38]  M. L. Krasnov,et al.  Recueil de problèmes sur les équations différentielles ordinaires , 1981 .

[39]  G. Adomian,et al.  A modified decomposition , 1992 .

[40]  Abdul-Majid Wazwaz,et al.  The numerical solution of sixth-order boundary value problems by the modified decomposition method , 2001, Appl. Math. Comput..

[41]  Abdul-Majid Wazwaz,et al.  Partial differential equations : methods and applications , 2002 .

[42]  Y Cherruault,et al.  Practical formulae for calculation of Adomian's polynomials and application to the convergence of the decomposition method. , 1994, International journal of bio-medical computing.

[43]  Mehmet Sezer,et al.  Taylor polynomial solutions of Volterra integral equations , 1994 .

[44]  Alex D. D. Craik,et al.  Prehistory of Faà di Bruno's Formula , 2005, Am. Math. Mon..

[45]  Feyed Ben Zitoun,et al.  A Taylor expansion approach using Faà di Bruno's formula for solving nonlinear integral equations of the second and third kind , 2009, Kybernetes.

[46]  Feyed Ben Zitoun,et al.  A method for solving nonlinear integro-differential equations , 2012, Kybernetes.

[47]  G. Adomian Nonlinear Stochastic Operator Equations , 1986 .

[48]  P. Darania,et al.  DEVELOPMENT OF THE TAYLOR EXPANSION APPROACH FOR NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS , 2006 .