A method for solving nonlinear differential equations
暂无分享,去创建一个
[1] A. Wazwaz. Approximate solutions to boundary value problems of higher order by the modified decomposition method , 2000 .
[2] Y. Cherruault. A comparison of numerical solutions of fourth‐order boundary value problems , 2005 .
[3] Ángel Martín del Rey,et al. Faa' di Bruno's formula, lattices, and partitions , 2005, Discret. Appl. Math..
[4] Lionel Gabet. Modélisation de la diffusion de médicaments à travers les capillaires et dans les tissus à la suite d'une injection et esquisse d'une théorie décompositionnelle et application aux équations aux dérivées partielles , 1992 .
[5] Feyed Ben Zitoun,et al. A new algorithm for solving nonlinear boundary value problems , 2009, Kybernetes.
[6] A. Beardon. The Differentiation of a Composite Function , 1971, The Mathematical Gazette.
[7] S. Khuri,et al. An Algorithm for Solving Boundary Value Problems , 2000 .
[8] John Riordan,et al. Introduction to Combinatorial Analysis , 1959 .
[9] Salih Yalçinbas. Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations , 2002, Appl. Math. Comput..
[10] Ravi P. Agarwal,et al. Boundary value problems for higher order differential equations , 1986 .
[11] R. Kanwal,et al. A Taylor expansion approach for solving integral equations , 1989 .
[12] Esquisse d'une théorie décompositionnelle , 1996 .
[13] D. M. Hutton,et al. Optimisation - Mèthodes locales et globales , 1999 .
[14] Y. Mahmoudi. Taylor polynomial solution of non-linear Volterra–Fredholm integral equation , 2005, Int. J. Comput. Math..
[15] Ernst Hairer. Analyse II (Calcul Différentiel et Equations Différentielles) , 1999 .
[16] P. Wynn. A transformation of series , 1971 .
[17] Warren P. Johnson. The Curious History of Faà di Bruno's Formula , 2002, Am. Math. Mon..
[18] L. Gabet,et al. The theoretical foundation of the Adomian method , 1994 .
[19] John Riordan,et al. Introduction to Combinatorial Analysis , 1958 .
[20] Mehmet Sezer,et al. On the solution of the Riccati equation by the Taylor matrix method , 2006, Appl. Math. Comput..
[21] David J. Evans,et al. Collocation approximation for fourth-order boundary value problems , 1997, Int. J. Comput. Math..
[22] George Adomian,et al. Transformation of series , 1991 .
[23] Yves Cherruault,et al. Application of the Adomian method for solving a class of boundary problems , 2004 .
[24] Y. Cherruault,et al. Convergence of Adomian's method applied to differential equations , 1994 .
[25] Khosrow Maleknejad,et al. Taylor polynomial solution of high-order nonlinear Volterra-Fredholm integro-differential equations , 2003, Appl. Math. Comput..
[26] J. Baxley. Nonlinear Two Point Boundary Value Problems , 1968 .
[27] George Adomian,et al. Solving Frontier Problems of Physics: The Decomposition Method , 1993 .
[28] C.J.H. Mann,et al. Optimisation Globale: Théorie Des Courbes α-denses , 2006 .
[29] D. O’Regan. Existence Theory for Nonlinear Ordinary Differential Equations , 1997 .
[30] J. Riordan. Derivatives of composite functions , 1946 .
[31] Mehmet Sezer,et al. A method for the approximate solution of the second‐order linear differential equations in terms of Taylor polynomials , 1996 .
[32] Weiming Wang,et al. An algorithm for solving the high-order nonlinear Volterra-Fredholm integro-differential equation with mechanization , 2006, Appl. Math. Comput..
[33] Henri Berliocchi. Modèles et méthodes mathématiques pour les sciences du vivant, by Y. Cherruault, Presses Universitaires de France - P.U.F., Paris, 1998, xi+299 pp., references (Pbk, 168 FF), ISBN 2 13 048978-8, 0246-3822 , 2000, Robotica.
[34] Eugene M. Klimko,et al. An algorithm for calculating indices in Fàa di Bruno's formula , 1973 .
[35] Abdul-Majid Wazwaz,et al. A reliable modification of Adomian decomposition method , 1999, Appl. Math. Comput..
[36] Karim Ivaz,et al. Numerical solution of nonlinear Volterra-Fredholm integro-differential equations , 2008, Comput. Math. Appl..
[37] R. Temam,et al. Inertial manifolds and slow manifolds , 1991 .
[38] M. L. Krasnov,et al. Recueil de problèmes sur les équations différentielles ordinaires , 1981 .
[39] G. Adomian,et al. A modified decomposition , 1992 .
[40] Abdul-Majid Wazwaz,et al. The numerical solution of sixth-order boundary value problems by the modified decomposition method , 2001, Appl. Math. Comput..
[41] Abdul-Majid Wazwaz,et al. Partial differential equations : methods and applications , 2002 .
[42] Y Cherruault,et al. Practical formulae for calculation of Adomian's polynomials and application to the convergence of the decomposition method. , 1994, International journal of bio-medical computing.
[43] Mehmet Sezer,et al. Taylor polynomial solutions of Volterra integral equations , 1994 .
[44] Alex D. D. Craik,et al. Prehistory of Faà di Bruno's Formula , 2005, Am. Math. Mon..
[45] Feyed Ben Zitoun,et al. A Taylor expansion approach using Faà di Bruno's formula for solving nonlinear integral equations of the second and third kind , 2009, Kybernetes.
[46] Feyed Ben Zitoun,et al. A method for solving nonlinear integro-differential equations , 2012, Kybernetes.
[47] G. Adomian. Nonlinear Stochastic Operator Equations , 1986 .
[48] P. Darania,et al. DEVELOPMENT OF THE TAYLOR EXPANSION APPROACH FOR NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS , 2006 .