${\tt ALaDyn}$: A High-Accuracy PIC Code for the Maxwell–Vlasov Equations

In this paper, we present acceleration by laser and dynamics of charged particles (ALaDyn), a particle-in-cell code, to investigate the interaction of a laser pulse with a preformed plasma and/or an externally injected beam. The code, fully parallelized, works in 1D, 2D, and 3D Cartesian geometry, and it is based on compact high-order finite-difference schemes ensuring higher spectral accuracy. We discuss the features, the performances, and the validation tests of the code. We finally present a preliminary application on a physically relevant case based on the PLASMON-X experiment of the CNR-INFN.

[1]  Lev Davidovich Landau,et al.  On the vibrations of the electronic plasma , 1946 .

[2]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .

[3]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[4]  R. d'Inverno,et al.  Introducing Einstein's Relativity , 1993 .

[5]  John D. Villasenor,et al.  Rigorous charge conservation for local electromagnetic field solvers , 1992 .

[6]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[7]  Giovanni Manfredi,et al.  Long-Time Behavior of Nonlinear Landau Damping , 1997 .

[8]  Alexander Pukhov,et al.  Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab) , 1999, Journal of Plasma Physics.

[9]  S. V. Bulanov,et al.  A kinetic model for the one-dimensional electromagnetic solitons in an isothermal plasma , 2002 .

[10]  Wei Lu,et al.  OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators , 2002, International Conference on Computational Science.

[11]  Alexander Pukhov,et al.  Strong field interaction of laser radiation , 2003 .

[12]  E. Sonnendrücker,et al.  Comparison of Eulerian Vlasov solvers , 2003 .

[13]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[14]  J. Cary,et al.  VORPAL: a versatile plasma simulation code , 2004 .

[15]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[16]  Manuel Calvo,et al.  Short note: a new minimum storage Runge-Kutta scheme for computational acoustics , 2004 .

[17]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[18]  D. Gurnett,et al.  Introduction to Plasma Physics: Introduction , 2005 .

[19]  K. Nakamura,et al.  GeV electron beams from a centimetre-scale accelerator , 2006 .

[20]  Y. Elskens From long-range interaction to collective behaviour and from Hamiltonian chaos to stochastic models , 2006 .

[21]  J. Vay,et al.  Noninvariance of space- and time-scale ranges under a Lorentz Transformation and the implications for the study of relativistic interactions. , 2007, Physical review letters.

[22]  Wei Lu,et al.  Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator , 2007, Nature.

[23]  L. Rossi,et al.  Numerical investigation of Maxwell–Vlasov equations – Part I: Basic physics and algorithms , 2008 .