Supervised classification of geometrical objects by integrating currents and functional data analysis

This paper focuses on the application of supervised classification techniques to a set of geometrical objects (bodies) characterized by currents, in particular, discriminant analysis and some nonparametric methods. A current is a relevant mathematical object to model geometrical data, like hypersurfaces, through integration of vector fields over them. As a consequence of the choice of a vector-valued reproducing kernel Hilbert space (RKHS) as a test space to integrate over hypersurfaces, it is possible to consider that hypersurfaces are embedded in this Hilbert space. This embedding enables us to consider classification algorithms of geometrical objects. We present a method to apply supervised classification techniques in the obtained vector-valued RKHS. This method is based on the eigenfunction decomposition of the kernel. The novelty of this paper is therefore the reformulation of a size and shape supervised classification problem in functional data analysis terms using the theory of currents and vector-valued RKHSs. This approach is applied to a 3D database obtained from an anthropometric survey of the Spanish child population with a potential application to online sales of children’s wear.

[1]  Hans-Georg Muller,et al.  Principal component analysis for functional data on Riemannian manifolds and spheres , 2017, The Annals of Statistics.

[2]  J Steve Marron,et al.  Overview of object oriented data analysis , 2014, Biometrical journal. Biometrische Zeitschrift.

[3]  Ross T. Whitaker,et al.  Dimensionality reduction and principal surfaces via Kernel Map Manifolds , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[4]  Charles C. Taylor,et al.  Kernel density classification for spherical data , 2019, Statistics & Probability Letters.

[5]  T. K. Carne,et al.  Shape and Shape Theory , 1999 .

[6]  Milan Lukić,et al.  Stochastic processes with sample paths in reproducing kernel Hilbert spaces , 2001 .

[7]  James O. Ramsay,et al.  Functional Data Analysis , 2005 .

[8]  Wendell H. Fleming,et al.  Normal and Integral Currents , 1960 .

[9]  Xavier Pennec,et al.  Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.

[10]  David B. Dunson,et al.  Extrinsic Local Regression on Manifold-Valued Data , 2015, Journal of the American Statistical Association.

[11]  Gareth M. James,et al.  Functional linear discriminant analysis for irregularly sampled curves , 2001 .

[12]  Herna L. Viktor,et al.  Measuring to Fit: Virtual Tailoring Through Cluster Analysis and Classification , 2006, PKDD.

[13]  Andrés M. Alonso,et al.  Supervised classification for functional data: A weighted distance approach , 2012, Comput. Stat. Data Anal..

[14]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[15]  Hans-Georg Müller Functional Data Analysis. , 2011 .

[16]  Joan Alexis Glaunès,et al.  Surface Matching via Currents , 2005, IPMI.

[17]  Carles M. Cuadras,et al.  DISTANCE ANALYSIS IN DISCRIMINATION AND CLASSIFICATION USING BOTH CONTINUOUS AND CATEGORICAL VARIABLES , 1989 .

[18]  Sung Ha Kang,et al.  Image and Video Colorization Using Vector-Valued Reproducing Kernel Hilbert Spaces , 2010, Journal of Mathematical Imaging and Vision.

[19]  Cynthia L. Istook,et al.  VALIDATION OF 'FEMALE FIGURE IDENTIFICATION TECHNIQUE (FFIT) FOR APPAREL ' SOFTWARE , 2004 .

[20]  P. Vieu,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[21]  Anuj Srivastava,et al.  Riemannian Computing in Computer Vision , 2015 .

[22]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[23]  Bruno Pelletier Non-parametric regression estimation on closed Riemannian manifolds , 2006 .

[24]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[25]  R. Eubank,et al.  An RKHS framework for functional data analysis , 2010 .

[26]  Ricardo Fraiman,et al.  Connecting pairwise geodesic spheres by depth: DCOPS , 2019, J. Multivar. Anal..

[27]  T. Hsing,et al.  Canonical correlation for stochastic processes , 2008 .

[28]  Yuko Araki,et al.  Functional Logistic Discrimination Via Regularized Basis Expansions , 2009 .

[29]  Eduardo Parrilla,et al.  Data-driven three-dimensional reconstruction of human bodies using a mobile phone app , 2016 .

[30]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[31]  David G. Kendall,et al.  Shape & Shape Theory , 1999 .

[32]  Felipe Cucker,et al.  On the mathematical foundations of learning , 2001 .

[33]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[34]  Stanley Durrleman,et al.  Statistical models of currents for measuring the variability of anatomical curves, surfaces and their evolution. (Modèles statistiques de courants pour mesurer la variabilité anatomique de courbes, de surfaces et de leur évolution) , 2010 .

[35]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[36]  Saburou Saitoh,et al.  Theory of Reproducing Kernels and Its Applications , 1988 .

[37]  Hyejin Shin An extension of Fisher's discriminant analysis for stochastic processes , 2008 .

[38]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[39]  Stéphane Canu,et al.  Operator-valued Kernels for Learning from Functional Response Data , 2015, J. Mach. Learn. Res..

[40]  Laurent Younes,et al.  Computable Elastic Distances Between Shapes , 1998, SIAM J. Appl. Math..

[41]  É. Senkene,et al.  Hilbert spaces of operator-valued functions , 1973 .

[42]  Enea G. Bongiorno,et al.  Functional Statistics and Related Fields , 2017 .

[43]  D. Stoyan,et al.  Fractals, random shapes and point fields : methods of geometrical statistics , 1996 .

[44]  J. Romo,et al.  On the Concept of Depth for Functional Data , 2009 .

[45]  Piotr Kokoszka,et al.  Inference for Functional Data with Applications , 2012 .

[46]  Ricardo Fraiman,et al.  Robust estimation and classification for functional data via projection-based depth notions , 2007, Comput. Stat..

[47]  H. Müller Functional Modelling and Classification of Longitudinal Data * , 2005 .

[48]  Hans-Georg Ller,et al.  Functional Modelling and Classification of Longitudinal Data. , 2005 .

[49]  Charles Bouveyron,et al.  Model-based clustering of high-dimensional data: A review , 2014, Comput. Stat. Data Anal..

[50]  T. Hsing,et al.  Theoretical foundations of functional data analysis, with an introduction to linear operators , 2015 .

[51]  C. Preda Regression models for functional data by reproducing kernel Hilbert spaces methods , 2007 .

[52]  Pedro Delicado,et al.  Choosing the most relevant level sets for depicting a sample of densities , 2017, Comput. Stat..

[53]  S. Smale,et al.  Geometry on Probability Spaces , 2009 .

[54]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[55]  Aldo Goia,et al.  An introduction to recent advances in high/infinite dimensional statistics , 2016, J. Multivar. Anal..

[56]  S. Geer,et al.  Regularization in statistics , 2006 .

[57]  Amelia Simó,et al.  The $$k$$k-means algorithm for 3D shapes with an application to apparel design , 2016, Adv. Data Anal. Classif..

[58]  Amelia Simó,et al.  Intrinsic sample mean in the space of planar shapes , 2016, Pattern Recognit..

[59]  Alain Trouvé,et al.  Statistical models of sets of curves and surfaces based on currents , 2009, Medical Image Anal..

[60]  Jie Peng,et al.  Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions , 2008, 0805.0463.

[61]  Peter Hall,et al.  A Functional Data—Analytic Approach to Signal Discrimination , 2001, Technometrics.

[62]  Juan Antonio Cuesta-Albertos,et al.  Impartial trimmed k-means for functional data , 2007, Comput. Stat. Data Anal..

[63]  Amelia Simó,et al.  Unsupervised classification of children’s bodies using currents , 2016, Adv. Data Anal. Classif..

[64]  Beatriz Nacher,et al.  3D Body Databases of the Spanish Population and its Application to the Apparel Industry , 2015 .

[65]  Julien Jacques,et al.  Functional data clustering: a survey , 2013, Advances in Data Analysis and Classification.

[66]  Fabrice Rossi,et al.  Recent Advances in the Use of SVM for Functional Data Classification , 2008 .

[67]  Luis Angel García-Escudero,et al.  A Proposal for Robust Curve Clustering , 2005, J. Classif..

[68]  José R. Berrendero,et al.  On the Use of Reproducing Kernel Hilbert Spaces in Functional Classification , 2015, Journal of the American Statistical Association.

[69]  A. Cuevas A partial overview of the theory of statistics with functional data , 2014 .

[70]  Jeng-Min Chiou,et al.  Functional clustering and identifying substructures of longitudinal data , 2007 .

[71]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[72]  J. Marron,et al.  Object oriented data analysis: Sets of trees , 2007, 0711.3147.

[73]  Jean-Michel Loubes,et al.  A kernel-based classifier on a Riemannian manifold , 2008, Statistics & Decisions.

[74]  K. J. Utikal,et al.  Inference for Density Families Using Functional Principal Component Analysis , 2001 .

[75]  Pedro Delicado,et al.  Functional k-sample problem when data are density functions , 2007, Comput. Stat..

[76]  Pedro Delicado,et al.  Dimensionality reduction when data are density functions , 2011, Comput. Stat. Data Anal..

[77]  H. Lian Nonlinear functional models for functional responses in reproducing kernel hilbert spaces , 2007, math/0702120.

[78]  Gilbert Saporta,et al.  PLS classification of functional data , 2005, Comput. Stat..

[79]  Pedro Delicado,et al.  Global and local distance-based generalized linear models , 2015, TEST.