Two-dimensional transverse-magnetic time-domain scattering using the Nystro/spl uml/m method and bandlimited extrapolation

A method is presented for the solution of the integral equations that describe the electromagnetic scattering from an infinitely long conducting cylinder in the time domain. The method discretizes the integral equations spatially using a high-order locally-corrected Nystro/spl uml/m method and temporally using a filtered kernel. The filtering of the kernel both controls aliasing and reduces the order of its singularity. On the other hand, filtering also gives rise to a noncausal kernel so the time marching is accomplished with a bandlimited extrapolation scheme. Numerical results demonstrate the stability and accuracy of the proposed method.

[1]  John Strain,et al.  Locally Corrected Multidimensional Quadrature Rules for Singular Functions , 1995, SIAM J. Sci. Comput..

[2]  P. Petre,et al.  Efficient high-order discretization schemes for integral equation methods , 1997, IEEE Antennas and Propagation Society International Symposium 1997. Digest.

[3]  Amelia Rubio Bretones,et al.  On the application of parametric models to the transient analysis of resonant and multiband antennas , 1998 .

[4]  Jian-Ming Jin,et al.  A Fast Fourier Transform Accelerated Marching-on-in-Time Algorithm for Electromagnetic Analysis , 2001 .

[5]  Tapan K. Sarkar,et al.  Analysis of transient scattering from composite arbitrarily shaped complex structures , 2000 .

[6]  Eric Michielssen,et al.  Analysis of transient electromagnetic scattering phenomena using a two-level plane wave time-domain algorithm , 2000 .

[7]  Dugald B. Duncan,et al.  Averaging techniques for time-marching schemes for retarded potential integral equations , 1997 .

[8]  Agostino Monorchio,et al.  A space-time discretization criterion for a stable time-marching solution of the electric field integral equation , 1997 .

[9]  Vladimir Rokhlin,et al.  Generalized Gaussian quadrature rules for systems of arbitrary functions , 1996 .

[10]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[11]  John J. Knab,et al.  Interpolation of band-limited functions using the approximate prolate series (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[12]  Roberto D. Graglia,et al.  Higher order interpolatory vector bases for computational electromagnetics," Special Issue on "Advanced Numerical Techniques in Electromagnetics , 1997 .

[13]  John J. Ottusch,et al.  Numerical Solution of the Helmholtz Equation in 2D and 3D Using a High-Order Nyström Discretization , 1998 .

[14]  Andrew J. Poggio,et al.  CHAPTER 4 – Integral Equation Solutions of Three-dimensional Scattering Problems , 1973 .

[15]  M. J. Bluck,et al.  Costs and cost scaling in time-domain integral-equation analysis of electromagnetic scattering , 1998 .

[16]  S. D. Gedney On deriving a locally corrected Nystrom scheme from a quadrature sampled moment method , 2003 .

[17]  Eric Michielssen,et al.  A hierarchical FFT algorithm (HIL-FFT) for the fast analysis of transient electromagnetic scattering phenomena , 2002 .

[18]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[19]  James R. Wait,et al.  Transient Electromagnetic Fields , 1976 .

[20]  E. Michielssen,et al.  A novel scheme for the solution of the time-domain integral equations of electromagnetics , 2004, IEEE Transactions on Antennas and Propagation.