Bounding the integer bootstrapped GNSS baseline’s tail probability in the presence of stochastic uncertainty

Differential carrier phase applications that utilize cycle resolution need the probability density function of the baseline estimate to quantify its region of concentration. For the integer bootstrap estimator, the density function has an analytical definition that enables probability calculations given perfect statistical knowledge of measurement and process noise. This paper derives a method to upper bound the tail probability of the integer bootstrapped GNSS baseline when the measurement and process noise correlation functions are unknown, but can be upper and lower bounded. The tail probability is shown to be a non-convex function of a vector of conditional variances, whose feasible region is a convex polytope. We show how to solve the non-convex optimization problem globally by discretizing the polytope into small hyper-rectangular elements, and demonstrate the method for a static baseline estimation problem.

[1]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[2]  P. Teunissen The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation , 1995 .

[3]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[4]  P. Teunissen An optimality property of the integer least-squares estimator , 1999 .

[5]  Bruce DeCleene,et al.  Defining Pseudorange Integrity - Overbounding , 2000 .

[6]  Lambert Wanninger,et al.  Carrier Phase Multipath Calibration of GPS Reference Stations , 2000 .

[7]  Peter Teunissen,et al.  GNSS ambiguity bootstrapping: theory and application , 2001 .

[8]  Peter Teunissen,et al.  The probability distribution of the ambiguity bootstrapped GNSS baseline , 2001 .

[9]  Peter Teunissen,et al.  Statistical GNSS carrier phase ambiguity resolution: a review , 2001, Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing (Cat. No.01TH8563).

[10]  Ahmed El-Rabbany,et al.  Effect of Temporal Physical Correlation on Accuracy Estimation in GPS Relative Positioning , 2003 .

[11]  P. Enge,et al.  Paired overbounding and application to GPS augmentation , 2004, PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556).

[12]  Alexandra Verhagen,et al.  The GNSS integer ambiguities: estimation and validation , 2005 .

[13]  Lihua Xie,et al.  On Robust H2 Estimation , 2005 .

[14]  Mark G. Petovello,et al.  Assessing Probability of Correct Ambiguity Resolution in the Presence of Time‐Correlated Errors , 2006 .

[15]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[16]  Donghyun Kim,et al.  Decorrelation of Troposphere Across Short Baselines , 2006, 2006 IEEE/ION Position, Location, And Navigation Symposium.

[17]  P. Ward,et al.  Satellite Signal Acquisition , Tracking , and Data Demodulation , 2006 .

[18]  Demoz Gebre-Egziabher,et al.  Symmetric overbounding of correlated errors , 2006 .

[19]  Peter Teunissen,et al.  Influence of ambiguity precision on the success rate of GNSS integer ambiguity bootstrapping , 2007 .

[20]  A new approach for calculating position domain integrity risk for cycle resolution in carrier phase navigation systems , 2010, 2008 IEEE/ION Position, Location and Navigation Symposium.

[21]  G. W. Pulford,et al.  A Proof of the Spherically Symmetric Overbounding Theorem For Linear Systems , 2008 .

[22]  P. J. G. Teunissen,et al.  Theory of carrier phase ambiguity resolution , 2003, Wuhan University Journal of Natural Sciences.

[23]  Peter Teunissen,et al.  Mixed integer estimation and validation for next generation GNSS , 2010 .

[24]  Yanming Feng,et al.  Computed success rates of various carrier phase integer estimation solutions and their comparison with statistical success rates , 2011 .

[25]  Boris Pervan,et al.  Assessing the Impact of Time Correlation Uncertainty on Cycle Ambiguity Resolution for High Integrity Aviation Applications , 2012 .

[26]  Michael Mayer,et al.  Analysing Time Series of GNSS Residuals by Means of AR(I)MA Processes , 2012 .

[27]  S. Langel,et al.  Bounding Integrity Risk for Sequential State Estimators with Stochastic Modeling Uncertainty , 2014 .

[28]  Steffen Schön,et al.  On the Mátern covariance family: a proposal for modeling temporal correlations based on turbulence theory , 2014, Journal of Geodesy.

[29]  S. Langel,et al.  Integrity Risk Bounding in Uncertain Linear Systems , 2015 .