Design Principles of Bipolar Electrochemical Co-Electrolysis Cells for Efficient Reduction of Carbon Dioxide from Gas Phase at Low Temperature

[1]  Ryszard Wycisk,et al.  High performance electrospun bipolar membrane with a 3D junction , 2017 .

[2]  Thomas F. Jaramillo,et al.  New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces , 2012 .

[3]  X. Bao,et al.  Electrocatalytic reduction of carbon dioxide over reduced nanoporous zinc oxide , 2016 .

[4]  Paul J. A. Kenis,et al.  One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer , 2016 .

[5]  M. Koper,et al.  The electrochemical characterization of copper single-crystal electrodes in alkaline media , 2013 .

[6]  T. Schmidt,et al.  Multivariate calibration method for mass spectrometry of interfering gases such as mixtures of CO, N2 , and CO2. , 2018, Journal of mass spectrometry : JMS.

[7]  Félix Barreras,et al.  Electrochemical reactors for CO2 reduction: From acid media to gas phase , 2016 .

[8]  José Solla-Gullón,et al.  Production of methanol from CO2 electroreduction at Cu2O and Cu2O/ZnO-based electrodes in aqueous solution , 2015 .

[9]  Dennis Y.C. Leung,et al.  A pH-differential dual-electrolyte microfluidic electrochemical cells for CO2 utilization , 2016 .

[10]  Abhijit Dutta,et al.  Electrochemical CO2 Reduction - A Critical View on Fundamentals, Materials and Applications. , 2015, Chimia.

[11]  H. Strathmann,et al.  Limiting current density and water dissociation in bipolar membranes , 1997 .

[12]  Paul J. A. Kenis,et al.  Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities , 2013 .

[13]  Garikoitz Beobide,et al.  Copper-Based Metal-Organic Porous Materials for CO2 Electrocatalytic Reduction to Alcohols. , 2017, ChemSusChem.

[14]  Curtis P. Berlinguette,et al.  Electrolysis of CO2 to Syngas in Bipolar Membrane-Based Electrochemical Cells , 2016 .

[15]  Matthew W. Kanan,et al.  Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. , 2012, Journal of the American Chemical Society.

[16]  C. Buess-Herman,et al.  NMR Study of the Reductive Decomposition of [BMIm][NTf2 ] at Gold Electrodes and Indirect Electrochemical Conversion of CO2. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[17]  M. Berggren,et al.  Ion diode logics for pH control. , 2012, Lab on a chip.

[18]  J. Flake,et al.  Electrochemical Reduction of CO2 at Functionalized Au Electrodes. , 2017, Journal of the American Chemical Society.

[19]  Joseph H. Montoya,et al.  Electrochemical CO2 reduction on Au surfaces: mechanistic aspects regarding the formation of major and minor products. , 2017, Physical chemistry chemical physics : PCCP.

[20]  Curtis P. Berlinguette,et al.  Electrolysis of Gaseous CO2 to CO in a Flow Cell with a Bipolar Membrane , 2018 .

[21]  X. Crispin,et al.  An Electrochromic Bipolar Membrane Diode , 2015, Advanced materials.

[22]  Robert Kutz,et al.  Sustainion Imidazolium‐Functionalized Polymers for Carbon Dioxide Electrolysis , 2017 .

[23]  Abhijit Dutta,et al.  Morphology Matters: Tuning the Product Distribution of CO2 Electroreduction on Oxide-Derived Cu Foam Catalysts , 2016 .

[24]  Angel Irabien,et al.  Electrochemical membrane reactors for the utilisation of carbon dioxide , 2016 .

[25]  Gastón O Larrazábal,et al.  Building Blocks for High Performance in Electrocatalytic CO2 Reduction: Materials, Optimization Strategies, and Device Engineering. , 2017, The journal of physical chemistry letters.

[26]  Y. Hori,et al.  Electrochemical CO 2 Reduction on Metal Electrodes , 2008 .

[27]  Wilson A. Smith,et al.  Photo-assisted water splitting with bipolar membrane induced pH gradients for practical solar fuel devices , 2015 .

[28]  Angel Irabien,et al.  Productivity and Selectivity of Gas‐Phase CO2 Electroreduction to Methane at Copper Nanoparticle‐Based Electrodes , 2017 .

[29]  Á. Irabien,et al.  Tailoring gas-phase CO2 electroreduction selectivity to hydrocarbons at Cu nanoparticles , 2018, Nanotechnology.

[30]  Paul A. Kohl,et al.  Hybrid Anion and Proton Exchange Membrane Fuel Cells , 2009 .

[31]  Richard I. Masel,et al.  Electrochemical conversion of CO2 to formic acid utilizing Sustainion™ membranes , 2017 .

[32]  Douglas R. Kauffman,et al.  Electrochemical Carbon Dioxide Reduction at Nanostructured Gold, Copper, and Alloy Materials , 2017 .

[33]  P. Kenis,et al.  Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials , 2011, Science.

[34]  Devin T. Whipple Microfluidic reactor for the electrochemical reduction of carbon dioxide , 2010 .

[35]  John Newman,et al.  Design of an Electrochemical Cell Making Syngas ( CO + H2 ) from CO2 and H2O Reduction at Room Temperature , 2007 .

[36]  Paul A. Kohl,et al.  PEM/AEM Junction Design for Bipolar Membrane Fuel Cells , 2017 .

[37]  Á. Irabien,et al.  Methanol electrosynthesis from CO2 at Cu2O/ZnO prompted by pyridine-based aqueous solutions , 2017 .

[38]  R. Kötz,et al.  Pt/IrO2–TiO2 cathode catalyst for low temperature polymer electrolyte fuel cell – Application in MEAs, performance and stability issues , 2016 .

[39]  Yoshio Hori,et al.  Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide , 2003 .

[40]  Anne C. Co,et al.  A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper , 2006 .

[41]  Angel Irabien,et al.  Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol , 2016 .

[42]  Robert Kutz,et al.  Electrochemical generation of syngas from water and carbon dioxide at industrially important rates , 2016 .

[43]  Emiliana Fabbri,et al.  Interfacial effects on the catalysis of the hydrogen evolution, oxygen evolution and CO 2 -reduction reactions for (co-)electrolyzer development , 2016 .