A Mintek perspective of the past 25 years in minerals bioleaching

[1]  M. E. Clark,et al.  Biotechnology in minerals processing: Technological breakthroughs creating value , 2006 .

[2]  K. Hallberg,et al.  Carbon, iron and sulfur metabolism in acidophilic micro-organisms. , 2009, Advances in microbial physiology.

[3]  Th.N. Zwietering Suspending of solid particles in liquid by agitators , 1958 .

[4]  J. Paul,et al.  XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential , 2005 .

[5]  O. Tuovinen,et al.  Catalytic effects of silver in the microbiological leaching of finely ground chalcopyrite-containing ore materials in shake flasks , 1990 .

[6]  D. Johnson,et al.  Microbiological and geochemical dynamics in simulated‐heap leaching of a polymetallic sulfide ore , 2008, Biotechnology and bioengineering.

[7]  B. Mishra,et al.  Heap bioleaching of chalcopyrite : A review , 2008 .

[8]  D. Rawlings,et al.  Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates , 2005, Microbial cell factories.

[9]  D. Johnson,et al.  Techniques for Detecting and Identifying Acidophilic Mineral-Oxidizing Microorganisms , 2007 .

[10]  C. L. Brierley,et al.  How will biomining be applied in future , 2008 .

[11]  G. Rossi The design of bioreactors , 1999 .

[12]  J. Modak,et al.  Studies on multi-metal ion tolerance of Thiobacillus ferrooxidans , 1997 .

[13]  M. Tsunekawa,et al.  Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions , 2001 .

[14]  D. Rawlings Microbially-assisted dissolution of minerals and its use in the mining industry , 2004 .

[15]  H. Tributsch,et al.  Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. , 1999, Microbiology.

[16]  I. Dinkla,et al.  Acidianus Brierleyi is the Dominant Thermoacidophile in a Bioleaching Community Processing Chalcopyrite Containing Concentrates at 70°C , 2009 .

[17]  P. Franzmann,et al.  The role of iron-hydroxy precipitates in the passivation of chalcopyrite during bioleaching , 2000 .

[18]  J. W. Neale,et al.  Determination of gas-liquid mass-transfer and solids-suspension parameters in mechanically-agitated three-phase slurry reactors , 1994 .

[19]  F. Bouquet,et al.  BROGIM®: A new three-phase mixing system testwork and scale-up , 2006 .

[20]  C. Baker-Austin,et al.  Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. , 2003, Microbiology.

[21]  S. W. Robertson,et al.  Integrated piloting of a thermophilic bioleaching process for the treatment of a low-grade nickel-copper sulphide concentrate , 2009 .

[22]  M. Gericke,et al.  Bioleaching of a chalcopyrite concentrate using an extremely thermophilic culture , 2001 .

[23]  J. Brierley A perspective on developments in biohydrometallurgy , 2008 .

[24]  P. D'hugues,et al.  Bioleaching of a Cobalt-Containing Pyrite in Stirred Reactors: a Case Study from Laboratory Scale to Industrial Application , 2007 .

[25]  D Barrie Johnson,et al.  The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. , 2007, Microbiology.

[26]  Giovanni Rossi,et al.  Biohydrometallurgy: a sustainable technology in evolution , 2003 .

[27]  M. Blazquez,et al.  A study of the bioleaching of a Spanish uranium ore. Part I: A review of the bacterial leaching in the treatment of uranium ores , 1995 .

[28]  Helen R. Watling,et al.  The bioleaching of nickel-copper sulfides , 2008 .

[29]  A. Ballester,et al.  Bioleaching of a Cuban copper concentrate in the presence of silver , 1993 .

[30]  TRAVELS THROUGH BIOLEACHING , 2005 .

[31]  C. Klauber A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution , 2008 .

[32]  D. Hunt,et al.  Genomics, metagenomics and proteomics in biomining microorganisms. , 2006, Biotechnology advances.

[33]  D. B. Johnson,et al.  Biodiversity and interactions of acidophiles: Key to understanding and optimizing microbial processing of ores and concentrates , 2008 .

[34]  C. Gómez,et al.  Effect of silver and bismuth on bioleaching of copper sulphide concentrates with thermophilic microorganisms , 1994 .

[35]  W. Kohr,et al.  Development of a method to assay the microbial population in heap bioleaching operations , 2006 .

[36]  Å. Sandström,et al.  A sequential two-step process using moderately and extremely thermophilic cultures for biooxidation of refractory gold concentrates , 2003 .

[37]  Eric Forssberg,et al.  Progress after three years of BioMinE—Research and Technological Development project for a global assessment of biohydrometallurgical processes applied to European non-ferrous metal resources , 2008 .

[38]  Helen R. Watling,et al.  The bioleaching of sulphide minerals with emphasis on copper sulphides — A review , 2006 .

[39]  Pedro A. Galleguillos,et al.  Identification of differentially expressed genes in an industrial bioleaching heap processing low-grade copper sulphide ore elucidated by RNA arbitrarily primed polymerase chain reaction , 2008 .

[40]  S. Robertson,et al.  MAXIMISING THE VALUE DERIVED FROM LABORATORY TESTWORK TOWARDS HEAP LEACHING DESIGN , 2009 .

[41]  C. Klauber,et al.  An X-ray photoelectron spectroscopy study of the mechanism of oxidative dissolution of chalcopyrite , 2003 .

[42]  D. Johnson,et al.  Enumeration and Characterization of Acidophilic Microorganisms Isolated from a Pilot Plant Stirred-Tank Bioleaching Operation , 2003, Applied and Environmental Microbiology.

[43]  A. Schippers MICROORGANISMS INVOLVED IN BIOLEACHING AND NUCLEIC ACID-BASED MOLECULAR METHODS FOR THEIR IDENTIFICATION AND QUANTIFICATION , 2007 .

[44]  J. A. King,et al.  Passivation of chalcopyrite during oxidative leaching in sulfate media , 1995 .

[45]  W. Sand,et al.  Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. , 2003, Applied microbiology and biotechnology.

[46]  J.Peacey,et al.  Copper hydrometallurgy--current status, preliminary economics, future direction and positioning versus smelting , 2004 .

[47]  David S. Holmes Review of International Biohydrometallurgy Symposium, Frankfurt, 2007 , 2008 .

[48]  J. Miller,et al.  Reaction mechanism for the acid ferric sulfate leaching of chalcopyrite , 1979 .

[49]  V. Neale,et al.  Mintek-BacTech's bacterial-oxidation technology for refractory gold concentrates : Beaconsfield and beyond , 2000 .

[50]  J. D. Batty,et al.  Development and commercial demonstration of the BioCOP™ thermophile process , 2006 .

[51]  M. Riekkola-Vanhanen Talvivaara Black Schist Bioheapleaching Demonstration Plant , 2007 .

[52]  C. Jerez The use of genomics, proteomics and other OMICS technologies for the global understanding of biomining microorganisms , 2008 .

[53]  W. Sand,et al.  Bacterial Leaching of Metal Sulfides Proceeds by Two Indirect Mechanisms via Thiosulfate or via Polysulfides and Sulfur , 1999, Applied and Environmental Microbiology.

[54]  M. Gericke,et al.  Advances in Tank Bioleaching of Low-Grade Chalcopyrite Concentrates , 2009 .

[55]  A. Belyi,et al.  Biooxidation of Refractory Gold Sulfide Concentrate of Olympiada Deposit , 2009 .

[56]  A. McEwan,et al.  Archaeal diversity in two thermophilic chalcopyrite bioleaching reactors. , 2006, Environmental Microbiology.

[57]  M. Blazquez,et al.  Silver-catalysed bioleaching of a chalcopyrite concentrate with mixed cultures of moderately thermophilic microorganisms , 1999 .

[58]  N. Oosterhuis,et al.  Dissolved oxygen concentration profiles in a production-scale bioreactor. , 1984, Biotechnology and bioengineering.

[59]  R. Cord-Ruwisch,et al.  Control of the redox potential by oxygen limitation improves bacterial leaching of chalcopyrite. , 2002, Biotechnology and Bioengineering.

[60]  Danny Castillo,et al.  Monitoring of Microbial Community Inhabiting a Low-Grade Copper Sulphide Ore by Quantitative Real-Time PCR Analysis of 16S rRNA Genes , 2007 .

[61]  E. Casamayor,et al.  Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap , 2005 .

[62]  D. Rawlings,et al.  Biomineralization of metal-containing ores and concentrates. , 2003, Trends in biotechnology.

[63]  D. Kelly,et al.  Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. , 2000, International journal of systematic and evolutionary microbiology.

[64]  M. Gericke,et al.  Bioleaching of copper sulphide concentrate using extreme thermophilic bacteria , 1999 .

[65]  C. L. Brierley,et al.  Present and future commercial applications of biohydrometallurgy , 2001 .