Effective exchange interactions for bad metals and implications for iron-based superconductors

The experimentally observed bad metal behavior in parent iron pnictides and chalcogenides suggests that these systems contain strong electronic correlations and are on the verge of a metal-to-insulator transition. The magnetic excitations in this bad-metal regime mainly derive from the incoherent part of the electronic spectrum away from the Fermi energy. We present a microscopic study of the exchange interactions in such a regime within a slave rotor approach. We find that the exchange interaction is maximized near the Mott transition. Generalizations to the multi-orbital case are discussed, as are the implications for the strength of superconducting pairing amplitude in the iron-based superconductors.

[1]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[2]  E. Rodriguez,et al.  Weak spin interactions in Mott insulating La2O2Fe2OSe2 , 2014, 1402.2684.

[3]  M. Fang,et al.  Role of the 245 phase in alkaline iron selenide superconductors revealed by high-pressure studies , 2012, 1209.1340.

[4]  E. Dagotto Colloquium: The unexpected properties of alkali metal iron selenide superconductors , 2012, 1210.6501.

[5]  R. Yu,et al.  Orbital-selective Mott phase in multiorbital models for alkaline iron selenides K1-xFe2-ySe2. , 2012, Physical review letters.

[6]  Z. Hussain,et al.  Observation of temperature-induced crossover to an orbital-selective Mott phase in A(x)Fe(2-y)Se2 (A=K, Rb) superconductors. , 2012, Physical review letters.

[7]  M. Randeria,et al.  Theory of high Tc ferrimagnetism in a multiorbital Mott insulator. , 2012, Physical review letters.

[8]  Jian-Xin Zhu,et al.  Superconductivity at the border of electron localization and itinerancy , 2011, Nature Communications.

[9]  B. Valenzuela,et al.  Orbital differentiation and the role of orbital ordering in the magnetic state of Fe superconductors , 2012, 1208.1917.

[10]  R. Birgeneau,et al.  Neutron-diffraction measurements of an antiferromagnetic semiconducting phase in the vicinity of the high-temperature superconducting state of K(x)Fe(2-y)Se2. , 2012, Physical review letters.

[11]  R. Yu,et al.  U(1) slave-spin theory and its application to Mott transition in a multiorbital model for iron pnictides , 2012, 1202.6115.

[12]  M. J. Calderón,et al.  Magnetic interactions in iron superconductors studied with a five-orbital model within the Hartree-Fock and Heisenberg approximations , 2011, 1107.2279.

[13]  M. Wang,et al.  Spin waves and magnetic exchange interactions in insulating Rb(0.89)Fe(1.58)Se(2). , 2011, Nature communications.

[14]  M. Fang,et al.  Fe-based superconductivity with Tc=31 K bordering an antiferromagnetic insulator in (Tl,K) FexSe2 , 2011 .

[15]  M. Green,et al.  A Novel Large Moment Antiferromagnetic Order in K 0.8 Fe 1.6 Se 2 Superconductor , 2011, 1102.0830.

[16]  E. Abrahams,et al.  Quantum criticality in the iron pnictides and chalcogenides , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  Jian-Xin Zhu,et al.  Mott transition in modulated lattices and parent insulator of (K,Tl)(y)Fe(x)Se(2) superconductors. , 2011, Physical review letters.

[18]  G. Giovannetti,et al.  Proximity of pnictide superconductors to a quantum tricritical point , 2010, Nature communications.

[19]  M. Fang,et al.  Fe-based high temperature superconductivity with Tc=31K bordering an insulating antiferromagnet in (Tl,K)FexSe2 Crystals , 2010, 1012.5236.

[20]  John S. O. Evans,et al.  Low-temperature nuclear and magnetic structures of La 2 O 2 Fe 2 O Se 2 from x-ray and neutron diffraction measurements , 2010, 1005.4600.

[21]  F. Kruger,et al.  Orbital ordering and unfrustrated (π,0) magnetism from degenerate double exchange in the iron pnictides , 2010, 1002.3165.

[22]  M. Fang,et al.  Band narrowing and Mott localization in iron oxychalcogenides La2O2Fe2O(Se,S)2. , 2009, Physical review letters.

[23]  Hiroshi Ishida,et al.  Fermi-liquid, non-Fermi-liquid, and Mott phases in iron pnictides and cuprates , 2009, 0911.1940.

[24]  D. Basov,et al.  Electronic correlations in the iron pnictides , 2009, 0909.0312.

[25]  E. Abrahams,et al.  Correlation effects in the iron pnictides , 2009, 0901.4112.

[26]  E. Dagotto,et al.  Properties of a two-orbital model for oxypnictide superconductors: Magnetic order, B2g spin-singlet pairing channel, and its nodal structure , 2009, 0901.3544.

[27]  W. Pickett,et al.  Anisotropy, itineracy, and magnetic frustration in high-Tc iron pnictides. , 2008, Physical review letters.

[28]  J. Oitmaa,et al.  Pnictides as frustrated quantum antiferromagnets close to a quantum phase transition , 2008, 0810.3068.

[29]  Fu-Chun Zhang,et al.  Strong coupling theory for superconducting iron pnictides. , 2008, Physical review letters.

[30]  E. Abrahams,et al.  Iron pnictides as a new setting for quantum criticality , 2008, Proceedings of the National Academy of Sciences.

[31]  Jiangping Hu,et al.  Pairing symmetry in a two-orbital exchange coupling model of oxypnictides. , 2008, Physical review letters.

[32]  Markus P. Mueller,et al.  Ising and Spin orders in Iron-Based Superconductors , 2008, 0804.4293.

[33]  Jiangping Hu,et al.  Theory of electron nematic order in LaFeAsO , 2008, 0804.3843.

[34]  T. Xiang,et al.  Arsenic-bridged antiferromagnetic superexchange interactions in LaFeAsO , 2008, 0804.3370.

[35]  E. Abrahams,et al.  Strong correlations and magnetic frustration in the high Tc iron pnictides. , 2008, Physical review letters.

[36]  T. Yildirim Origin of the 150-K anomaly in LaFeAsO: competing antiferromagnetic interactions, frustration, and a structural phase transition. , 2008, Physical review letters.

[37]  Chaoxing Liu,et al.  Minimal two-band model of the superconducting iron oxypnictides , 2008, 0804.1113.

[38]  H. Mook,et al.  Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems , 2008, Nature.

[39]  G. Kotliar,et al.  Correlated electronic structure of LaO1-xFxFeAs. , 2008, Physical review letters.

[40]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[41]  A. Georges,et al.  Orbital-selective Mott transition in multiband systems : Slave-spin representation and dynamical mean-field theory , 2005, cond-mat/0503764.

[42]  Sung-Sik Lee,et al.  U(1) gauge theory of the Hubbard model: spin liquid states and possible application to kappa-(BEDT-TTF)2Cu2(CN)3. , 2005, Physical review letters.

[43]  A. Georges,et al.  Slave-rotor mean-field theories of strongly correlated systems and the Mott transition in finite dimensions , 2004, cond-mat/0404334.

[44]  H. Takagi,et al.  Universality of the Mott–Ioffe–Regel limit in metals , 2004, cond-mat/0404263.

[45]  A. Georges,et al.  Quantum impurity solvers using a slave rotor representation , 2002, cond-mat/0206571.