Advances in computational Lyapunov analysis using sum-of-squares programming

The stability of an equilibrium point of a nonlinear dynamical system is typically determined using Lyapunov theory. This requires the construction of an energy-like function, termed a Lyapunov function, which satisfies certain positivity conditions. Unlike linear dynamical systems, there is no algorithmic method for constructing Lyapunov functions for general nonlinear systems. However, if the systems of interest evolve according to polynomial vector fields and the Lyapunov functions are constrained to be sum-of-squares polynomials then stability verification can be cast as a semidefinite (convex) optimization programme. In this paper we describe recent advances in sum-of-squares programming that facilitate advanced stability analysis and control design.

[1]  Weehong Tan,et al.  Nonlinear Control Analysis and Synthesis using Sum-of-Squares Programming , 2006 .

[2]  Donal O'Shea,et al.  Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.

[3]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[4]  Didier Henrion,et al.  GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.

[5]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[6]  Antonis Papachristodoulou,et al.  Positive Forms and Stability of Linear Time-Delay Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[7]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[8]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[9]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[10]  Fen Wu,et al.  Generalized nonlinear ℋ︁∞ synthesis condition with its numerically efficient solution , 2011 .

[11]  Ufuk Topcu,et al.  Robust Region-of-Attraction Estimation , 2010, IEEE Transactions on Automatic Control.

[12]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[13]  Graziano Chesi Estimating the domain of attraction for uncertain polynomial systems , 2004, Autom..

[14]  Peter Giesl,et al.  Revised CPA method to compute Lyapunov functions for nonlinear systems , 2014 .

[15]  A. Papachristodoulou,et al.  Analysis of Non-polynomial Systems using the Sum of Squares Decomposition , 2005 .

[16]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[17]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[18]  Ali Jadbabaie,et al.  Nonlinear H∞ control: an enhanced quasi-LPV approach , 1999 .

[19]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[20]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[21]  A. Isidori,et al.  Disturbance attenuation and H/sub infinity /-control via measurement feedback in nonlinear systems , 1992 .

[22]  Fen Wu,et al.  Nonlinear output feedback H∞ control for polynomial nonlinear systems , 2008, 2008 American Control Conference.

[23]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[24]  James Anderson,et al.  Region of attraction analysis via invariant sets , 2014, 2014 American Control Conference.

[25]  Antonis Papachristodoulou,et al.  Analysis of Polynomial Systems With Time Delays via the Sum of Squares Decomposition , 2009, IEEE Transactions on Automatic Control.

[26]  A. Papachristodoulou,et al.  Nonlinear control synthesis by sum of squares optimization: a Lyapunov-based approach , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[27]  Pablo A. Parrilo,et al.  Nonlinear control synthesis by convex optimization , 2004, IEEE Transactions on Automatic Control.

[28]  B. Tibken,et al.  Computing the domain of attraction for polynomial systems via BMI optimization method , 2006, 2006 American Control Conference.

[29]  Matthew M. Peet,et al.  Exponentially Stable Nonlinear Systems Have Polynomial Lyapunov Functions on Bounded Regions , 2007, IEEE Transactions on Automatic Control.

[30]  Kolmanovskii,et al.  Introduction to the Theory and Applications of Functional Differential Equations , 1999 .

[31]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[32]  J. Doyle,et al.  𝓗∞ Control of Nonlinear Systems: a Convex Characterization , 1995, IEEE Trans. Autom. Control..

[33]  Miroslav Krstic,et al.  A globally asymptotically stable polynomial vector field with no polynomial Lyapunov function , 2011, IEEE Conference on Decision and Control and European Control Conference.

[34]  Antonis Papachristodoulou,et al.  A Converse Sum of Squares Lyapunov Result With a Degree Bound , 2012, IEEE Transactions on Automatic Control.

[35]  Emmanuel Trélat,et al.  Nonlinear Optimal Control via Occupation Measures and LMI-Relaxations , 2007, SIAM J. Control. Optim..

[36]  G. Chesi Homogeneous Polynomial Forms for Robustness Analysis of Uncertain Systems , 2009 .

[37]  Antonis Papachristodoulou,et al.  Generalised absolute stability and Sum of Squares , 2011, Proceedings of the 2011 American Control Conference.