Lanthanide induced shifts and relaxation rate enhancements

[1]  M. D. Kemple,et al.  The use of lanthanides for solution structure determination of biomolecules by NMR. Evaluation of the methodology with EDTA derivatives as model systems , 1988 .

[2]  C. N. Reilley,et al.  Europium luminescence lifetimes and spectra for evaluation of 11 europium complexes as aqueous shift reagents for nuclear magnetic resonance spectrometry , 1982 .

[3]  M. Albin,et al.  Characterization of a potentially axially symmetric europium(III) complex of a tetraacetate,tetraaza, macrocyclic ligand by luminescence excitation, emission and lifetime spectroscopy , 1982 .

[4]  M. Botta,et al.  Synthesis and NMRD studies of gadolinium(3+) complexes of macrocyclic polyamino polycarboxylic ligands bearing .beta.-benzyloxy-.alpha.-propionic residues , 1992 .

[5]  L. Dick,et al.  13C NMR of methylated lysines of fd gene 5 protein: evidence for a conformational change involving lysine 24 upon binding of a negatively charged lanthanide chelate. , 1989, Biochemistry.

[6]  W. Horrocks The temperature dependencies of lanthanide-induced NMR shifts: Evaluation of theoretical approaches and experimental evidence , 1977 .

[7]  Joop A. Peters,et al.  Multinuclear magnetic resonance in the presence of lanthanide(III) as analytical tool for structure determination in solution , 1983 .

[8]  D. J. Raber,et al.  Structure elucidation with lanthanide induced shifts. 9. bicyclo[3.3.1]nonan-9-one , 1980 .

[9]  A. McLaughlin,et al.  Relaxation times in systems with chemical exchange: Approximate solutions for the nondilute case , 1973 .

[10]  A. Sherry,et al.  Lanthanide-nota chelates as aqueous shift reagents: Interaction with cyclopropane carboxylic acid , 1985 .

[11]  V. Jacques,et al.  Quantitative Two-Dimensional EXSY Spectroscopy and Dynamic Behavior of a Paramagnetic Lanthanide Macrocyclic Chelate: YbDOTA(DOTA = 1,4,7,10-Tetraazacyclododecane-N,N',N'',N'''-tetraacetic Acid) , 1994 .

[12]  A. Sherry,et al.  The solution structure of Ln (DOTP)5− complexxes. A comparison of lanthanide-induced paramagnetic shifts with the MMX energy-minimized structure , 1992 .

[13]  Â. R. Tomé,et al.  Physical basis for the resolution of intra- and extracellular cesium-133 NMR resonances in cesium(+) loaded human erythrocyte suspensions in the presence and absence of shift reagents , 1992 .

[14]  A. Sherry,et al.  Thermodynamic study of lanthanide complexes of 1,4,7-triazacyclononane-N,N',N"-triacetic acid and 1,4,7,10-tetraazacyclododecane-N,N',N",N'''-tetraacetic acid , 1987 .

[15]  P. Anelli,et al.  Gd(DOTP)5‐ outer‐sphere relaxation enhancement promoted by nitrogen bases , 1993, Magnetic resonance in medicine.

[16]  W. Horrocks Lanthanide shift reagents. Model which accounts for the apparent axial symmetry of shift reagent adducts in solution , 1974 .

[17]  M. Witanowski,et al.  Selection of dipivalomethanate chelates as shift reagents for nitrogen-14 nuclear magnetic resonance , 1971 .

[18]  H. L. Goering,et al.  Tris[3-(trifluoromethylhydroxymethylene)-d-camphorato]europium(III). Chiral shift reagent for direct determination of enantiomeric compositions , 1971 .

[19]  A. Sherry,et al.  In vivo Na‐23 MR imaging and spectroscopy of rat brain during TmDOTP5− infusion , 1992, Journal of magnetic resonance imaging : JMRI.

[20]  R. Sievers,et al.  Complexes of nucleophiles with rare earth chelates. I. Gas chromatographic studies of lanthanide nuclear magnetic resonance shift reagents , 1972 .

[21]  D. J. Raber,et al.  Structure elucidation with lanthanide-induced shifts. 8. Geometry of europium-ketone complexes , 1980 .

[22]  M. Botta,et al.  Synthesis and characterization of a novel DTPA-like gadolinium(III) complex : a potential reagent for the determination of glycated proteins by water proton NMR relaxation measurements , 1993 .

[23]  K. Raymond,et al.  Gadolinium complexation by a new diethylenetriaminepentaacetic acid-amide ligand. Amide oxygen coordination , 1990 .

[24]  Joop A. Peters,et al.  The structure of adducts of the three diastereoisomeric 1,4:3,6-dianhydrohexitols and lanthanide chelates in acetone , 1984 .

[25]  A. Mannschreck,et al.  Chiral recognition of alkene and arene hydrocarbons by 1H and 13C NMR. determination of enantiomeric purity , 1981 .

[26]  S. H. Koenig,et al.  Synthesis and Characterization of the Gadolinium(3+) Complex of DOTA-Propylamide: A Model DOTA-Protein Conjugate , 1989 .

[27]  J. J. Stezowski,et al.  Heavy Metal Ionophores: Correlations Among Structural Parameters of Complexed Nonpeptide Polyamino Acids , 1984 .

[28]  G. P. Moss,et al.  Lanthanide-induced differential shifts in N.M.R. spectra of aqueous solutions , 1971 .

[29]  M. Brechbiel,et al.  Gd(DOTA): An alternative to Gd(DTPA) as a T1,2 relaxation agent for NMR imaging or spectroscopy , 1986, Magnetic resonance in medicine.

[30]  P. Anelli,et al.  Novel Contrast Agents for Magnetic Resonance Imaging. Synthesis and Characterization of the Ligand BOPTA and Its Ln(III) Complexes (Ln = Gd, La, Lu). X-ray Structure of Disodium (TPS-9-145337286-C-S)-[4-Carboxy-5,8,11-tris(carboxymethyl)-1-phenyl-2-oxa- 5,8,11-triazatridecan-13-oato(5-)]gadolinate(2 , 1995 .

[31]  R. Ramasamy,et al.  Synthesis, characterization, and 23Na NMR shift studies of a novel dysprosium(III) crown ether texaphyrin , 1992 .

[32]  W. Horrocks,et al.  Water-soluble lanthanide porphyrins: shift reagents for aqueous solution , 1978 .

[33]  T. Wenzel,et al.  Nuclear magnetic resonance studies of terpenes with chiral and achiral lanthanide(III)-silver(I) binuclear shift reagents , 1982 .

[34]  C. Dobson,et al.  Paramagnetic ions as structural probes in solid-state NMR: Distance measurements in crystalline lanthanide acetates , 1993 .

[35]  I. Bertini NMR of Paramagnetic Molecules , 1995 .

[36]  D. Chadwick,et al.  Lanthanum-induced 13C-n.m.r. shifts: a novel probe of π-electron delocalisation , 1982 .

[37]  Eric T. Fossel,et al.  Aqueous shift reagents for high-resolution cationic nuclear magnetic resonance. III: Dy(TTHA)3-, Tm(TTHA)3-, and Tm(PPP)27- , 1984 .

[38]  P C Lauterbur,et al.  Dendrimer‐based metal chelates: A new class of magnetic resonance imaging contrast agents , 1994, Magnetic resonance in medicine.

[39]  T. Spiro Calcium in biology , 1983 .

[40]  A. Beeby,et al.  Luminescence behaviour of stable europium and terbium complexes of tetraaza phosphinates: efficient through-space energy transfer from phenyl to terbium , 1993 .

[41]  Milton D. Johnston,et al.  Structure elucidation with lanthanide-induced shifts. 2. Conformational analysis of cyclohexanecarbonitrile , 1977 .

[42]  R. Bryant,et al.  Nuclear magnetic relaxation in aqueous solutions of the gadolinium-N-(2-hydroxyethyl)ethylenediamine triacetic acid complex , 1990 .

[43]  C. D. Barry,et al.  Quantitative Determination of Mononucleotide Conformations in Solution using Lanthanide Ion Shift and Broadening NMR Probes , 1971, Nature.

[44]  Joop A. Peters,et al.  An nmr study of gadol inium (iii) hydroxycarboxtlate complexes in aqueous medium using gd(iii) induced 13c relaxation rate enhancements , 1986 .

[45]  C. Dobson,et al.  Origin of lanthanide nuclear magnetic resonance shifts and their uses , 1972 .

[46]  Joop A. Peters,et al.  The Hydrolysis of Trimetaphosphate Catalyzed by Lanthanide(III) Aminopolycarboxylate Complexes: Coordination, Stability, and Reactivity of Intermediate Complexes , 1995 .

[47]  Joop A. Peters,et al.  Multinuclear NMR study of the complexation of lanthanide(III) cations with sodium triphosphate: induced shifts and relaxation rate enhancements , 1985 .

[48]  K. E. Newman,et al.  Oxygen‐17 NMR and EPR studies of water exchange from the first coordination sphere of gadolinium(III) aquoion and gadolinium(III) propylenediaminetetra‐acetate , 1980 .

[49]  T. Wenzel,et al.  Lanthanide-chiral resolving agent mixtures as chiral NMR shift reagents , 1992 .

[50]  G. Laurenczy,et al.  139La NMR as a tool for kineic studies , 1988 .

[51]  K. Balkus,et al.  Studies of Gd(III)-Exchanged Y-Type Zeolites Relevant to Magnetic Resonance Imaging , 1994 .

[52]  C. Geraldes Lanthanide shift reagents. , 1993, Methods in enzymology.

[53]  C. W. Hilbers,et al.  Exploration of the single-stranded DNA-binding domains of the gene V proteins encoded by the filamentous bacteriophages IKe and M13 by means of spin-labeled oligonucleotide and lanthanide-chelate complexes. , 1993, European journal of biochemistry.

[54]  C. Dobson,et al.  Studies of rare-earth stannates by trin-119 MAS NMR. The use of paramagnetic shift probes in the solid state , 1989 .

[55]  Joop A. Peters,et al.  The addition of hydroxyl compounds to unsaturated carboxylic acids homogeneously catalysed by lanthanide(III) , 1993 .

[56]  R. C. Harden,et al.  Lanthanide shift reagents for nuclear magnetic resonance spectroscopy , 1973 .

[57]  Seymour H. Koenig,et al.  Field-cycling relaxometry of protein solutions and tissue: Implications for MRI , 1990 .

[58]  D. Parker NMR Determination of Enantiomeric Purity , 1991 .

[59]  R. J. Williams,et al.  Comparison of the solution and crystal structures of mitochondrial cytochrome c. Analysis of paramagnetic shifts in the nuclear magnetic resonance spectrum of ferricytochrome c. , 1985, Journal of molecular biology.

[60]  Joop A. Peters,et al.  Analysis of multinuclear lanthanide induced shifts. Part 5. The co-ordination polyhedron of 1 : 3 lanthanide(III)–glycolate complexes in aqueous solution , 1988 .

[61]  O. Lutz,et al.  135La and139La nuclear magnetic resonance studies , 1980 .

[62]  Joop A. Peters,et al.  The use of 1H and 13C spin-lattice relaxation rates in the structure determination of adducts of adamantane-1-carbonitrile and lanthanide chelates in solution; comparison with the results of measurements of lanthanide induced shifts , 1982 .

[63]  A. Sherry,et al.  Number of inner‐sphere water molecules in Gd3+ and Eu3+ complexes of DTPA‐amide and ‐ester conjugates , 1988, Magnetic resonance in medicine.

[64]  Joop A. Peters,et al.  The synthesis of (poly)hydroxycarboxylates Part IV. Eu(III) promoted O-alkylation of glycolate with maleate as studied on-line by luminescence , 1991 .

[65]  K. Balkus,et al.  Molecular sieve based MRI contrast agents , 1994 .

[66]  S. Meiboom,et al.  Proton Relaxation in Dilute Solutions of Cobalt(II) and Nickel(II) Ions in Methanol and the Rate of Methanol Exchange of the Solvation Sphere , 1964 .

[67]  Joop A. Peters,et al.  Structure and dynamics of lanthanide(III) complexes of the bis(propylamide) of diethylenetriaminepentaacetic acid in aqueous solution , 1991 .

[68]  J. Ellis,et al.  WIDE VS NARROW LUNG WINDOWS IN CHEST COMPUTED TOMOGRAPHY , 1991 .

[69]  J. Leigh Relaxation times in systems with chemical exchange: Some exact solutions , 1971 .

[70]  P. Man,et al.  Solid-state 139La NMR investigation of lanthanum-exchanged Y zeolites , 1992 .

[71]  C. Detellier,et al.  Characterization of the 18-crown-6-lanthanum(III) complex in methanol using 139La nuclear magnetic resonance , 1989 .

[72]  Joop A. Peters,et al.  Determination of the number of inner-sphere water molecules in lanthanide(III) polyaminocarboxylate complexes , 1992, Journal of the Chemical Society. Dalton Transactions.

[73]  G. C. Levy,et al.  Paramagnetic relaxation reagents. Alternatives or complements to lanthanide shift reagents in nuclear magnetic resonance spectral analysis , 1974 .

[74]  C. Chachaty,et al.  Tertiary phosphine oxide complexes with lanthanide .beta.-diketonates. NMR-relaxation and pseudocontact-shift studies , 1981 .

[75]  Michael F. Tweedle,et al.  Synthesis, stability, and structure of gadolinium(III) and yttrium(III) macrocyclic poly(amino carboxylates) , 1994 .

[76]  R. Bryant,et al.  Carbon CP-MASS NMR and X-ray crystal structure of paramagnetic lanthanide acetates , 1986 .

[77]  J. Brainard,et al.  Solution and solid-state characterization of europium and gadolinium Schiff base complexes and assessment of their potential as contrast agents in magnetic resonance imaging , 1989 .

[78]  L. Helm,et al.  A change in coordination number from nine to eight along the lanthanide(III) aqua ion series in solution: a neutron diffraction study , 1995 .

[79]  W. C. Brumley,et al.  Errors in analyses of lanthanide-induced shifts. Cis- and Trans-pinocarveol , 1976 .

[80]  Dudley H. Williams,et al.  A shift reagent for use in nuclear magnetic resonance spectroscopy. A first-order spectrum of n-hexanol , 1970 .

[81]  Robert J.P. Williams The chemistry of lanthanide ions in solution and in biological systems , 1982 .

[82]  B. Mcgarvey Temperature dependence of the pseudocontact shift in lanthanide shift reagents , 1979 .

[83]  J. A. Jackson,et al.  Oxygen‐17 NMR Shifts in Aqueous Solutions of Rare‐Earth Ions , 1962 .

[84]  A. Sherry,et al.  Lanthanide-induced shift and relaxation-rate studies of aqueous L-proline solutions , 1983 .

[85]  C. N. Reilley,et al.  Multinuclear nuclear magnetic resonance study of three aqueous lanthanide shift reagents: complexes with EDTA and axially symmetric macrocyclic polyamino polyacetate ligands , 1981 .

[86]  M. Hájek,et al.  Binuclear shift reagents. Structure and mode of interaction of Ag(fod)–Ln(fod)3 with benzene , 1986 .

[87]  W. Horrocks,et al.  Lanthanide Complexes as Nuclear Magnetic Resonance Structural Probes: Paramagnetic Anisotropy of Shift Reagent Adducts , 1972, Science.

[88]  N. Platzer,et al.  Lanthanide tetraphenylimidodiphosphinates: X-ray structure of an ethyl acetate adduct and use as n.m.r. shift reagents for acids , 1987 .

[89]  E. Oldfield,et al.  Oxygen-17 nuclear magnetic resonance spectroscopic study of the lanthanide oxides , 1992 .

[90]  S. Mirzadeh,et al.  Chelates and antibodies: current methods and new directions. , 1990, Cancer treatment and research.

[91]  C. Dobson,et al.  Nuclear-magnetic-resonance studies of 5'-ribonucleotide and 5'-deoxyribonucleotide conformations in solution using the lanthanide probe method. , 1978, European journal of biochemistry.

[92]  A. Barnes,et al.  The hydration of Dy3+ and Yb3+ in aqueous solution: A neutron scattering first order difference study , 1989 .

[93]  M. C. Baird,et al.  Cleavage reactions of alkylcobaloximes with anhydrous hydrogen chloride , 1982 .

[94]  T. A. Babushkina,et al.  Interpretation of lanthanide-induced shifts in NMR spectra. The case of nonaxial symmetry , 1983 .

[95]  A. A. Pinkerton,et al.  Lanthanide-induced contact shifts. the average electron spin polarization, theory and experiment , 1985 .

[96]  Gabriel González,et al.  Water-exchange, electronic relaxation, and rotational dynamics of the MRI contrast agent [Gd(DTPA-BMA)(H2O)] in aqueous solution: a variable pressure, temperature, and magnetic field oxygen-17 NMR study , 1994 .

[97]  M. Loncin,et al.  NMR investigation of the lanthanide complexes with a 14-membered polyaza polyacetic macrocycle TETA. Another rare example of nonlabile lanthanide compounds , 1986 .

[98]  Joop A. Peters,et al.  Multinuclear magnetic resonance study of the structure and dynamics of lanthanide(III) complexes of the bis(propylamide) of diethylenetriaminepentaacetic acid in aqueous solution , 1993 .

[99]  B. Bleaney Nuclear magnetic resonance shifts in solution due to lanthanide ions , 1972 .

[100]  M. Botta,et al.  Trends in NMR studies of paramagnetic Gd(III) complexes as potential contrast agents in MRI , 1991 .

[101]  L. Helm,et al.  Oxygen-17 NMR study of water exchange on gadolinium polyaminopolyacetates [Gd(DTPA)(H2O)]2- and [Gd(DOTA)(H2O)]- related to NMR imaging , 1993 .

[102]  K. Vasavada,et al.  Nuclear spin relaxation in liquids due to interaction with paramagnetic ions having anisotropic g tensors , 1989 .

[103]  J. Freed Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids. II. Finite jumps and independent T1 processes , 1978 .

[104]  Gabriel González,et al.  Unexpectedly large change of water exchange rate and mechanism on [Ln(DTPA-BMA)(H2O)] complexes along the lanthanide(III) series , 1995 .

[105]  R. Bryant,et al.  13C CP-MAS NMR spectra of paramagnetic solids , 1983 .

[106]  I. Smith,et al.  Magnetic resonance spectroscopy in biology and medicine. , 1989, Clinical biochemistry.

[107]  Lidia M. Vallarino,et al.  Hexaaza macrocyclic complexes of the lanthanides , 1986 .

[108]  Raj K. Gupta NMR spectroscopy of cells and organisms , 1987 .

[109]  D. W. Lewis,et al.  Tris[3-(tert-butylhydroxymethylene)-d-camphorato]europium(III). A reagent for determining enantiomeric purity , 1970 .

[110]  Jonathan L. Sessler,et al.  Gadolinium(III) texaphyrin : a novel MRI contrast agent , 1993 .

[111]  R. M. Golding,et al.  A theoretical study of the 14N and 17O N.M.R. shifts in lanthanide complexes , 1972 .

[112]  M. Shapiro,et al.  Lanthanide-induced shifts in proton nuclear magnetic resonance spectra. XI. Equilibrium constants and bound shifts for cyclohexanones and cyclohexanols , 1975 .

[113]  C. Carraher,et al.  Metal-Containing Polymeric Systems , 1985 .

[114]  C. Dobson,et al.  Yttrium-89 magic angle spinning NMR study of rare-earth pyrochlores: paramagnetic shifts in the solid state , 1990 .

[115]  A. D. Watson,et al.  Preparation and characterization of paramagnetic polychelates and their protein conjugates. , 1990, Bioconjugate chemistry.

[116]  C. Detellier,et al.  Interactions of La(III) with anions in aqueous solutions. A139La NMR study , 1992 .

[117]  T. J. Swift,et al.  NMR‐Relaxation Mechanisms of O17 in Aqueous Solutions of Paramagnetic Cations and the Lifetime of Water Molecules in the First Coordination Sphere , 1962 .

[118]  Y. Sasaki,et al.  Highly consistent correlation between absolute configuration of α-amino acids and their shift induced by the n.m.r. chiral shift reagent propylenediaminetetra-acetatoeuropium(III) in aqueous solution , 1987 .

[119]  C. S. Springer,et al.  Aqueous shift reagents for high‐resolution cation NMR. VI. Titration curves for in vivo 23Na and 1H2O MRS obtained from rat blood , 1993, NMR in biomedicine.

[120]  J. Reuben,et al.  Aqueous lanthanide shift reagents. 9. Evaluation of a model for the separation of contact and dipolar shift contributions: Effects of magnetic asymmetry , 1980 .

[121]  Joop A. Peters,et al.  Structural and conformational effects on the complexation of calcium by 2,3-dicarboxy derivatives of β-cyclodextrin (cyclomaltoheptaose), amylose, and cellulose , 1990 .

[122]  Alan R. Rath,et al.  31P and 23Na NMR studies of the structure and lability of the sodium shift reagent, bis(tripolyphosphate)dysprosium(iii) ([dy(p3O10)]7−) ion, and its decomposition in the presence of rat muscle , 1986, Magnetic resonance in medicine.

[123]  F. Rossotti,et al.  Hydration of complexone complexes of lanthanide cations , 1980 .

[124]  Amy Springer,et al.  Aqueous Shift Reagents for High-Resolution Cation NMR Spectroscopy. 4.† DybPPPpob , 1990 .

[125]  K. Hubner,et al.  Gadolinium‐labeled liposomes containing paramagnetic amphipathic agents: Targeted MRI contrast agents for the liver , 1988, Magnetic resonance in medicine.

[126]  W. Perman,et al.  Evaluation of two new gadolinium chelates as contrast agents for MRI. , 1992, Magnetic resonance imaging.

[127]  A. Sherry,et al.  Synthesis and characterization of a series of macrocyclic chelates containing O and N donors: Prospects for use as NMR shift agents for alkali-metal cations , 1990 .

[128]  B. Sumegi,et al.  Relaxometry, animal biodistribution, and magnetic resonance imaging studies of some new gadolinium (III) macrocyclic phosphinate and phosphonate monoester complexes , 1993, Magnetic resonance in medicine.

[129]  R. R. Fraser,et al.  Determination of enantiomeric purity by an optically active nuclear magnetic resonance shift reagent of wide applicability , 1971 .

[130]  T. Wenzel,et al.  New binuclear lanthanide NMR shift reagents effective for aromatic compounds , 1980 .

[131]  M. Botta,et al.  NMR study of solution structures and dynamics of lanthanide(III) complexes of DOTA , 1992 .

[132]  Y. Sasaki,et al.  A facile nmr method for assigning absolute configuration of underivatized α-methyl-α-amino acids using a chiral lanthanoid shift reagent for aqueous solution , 1990 .

[133]  R. Martin,et al.  Dipolar shifts and structure in aqueous solutions of 3:1 lanthanide complexes of 2,6-dipicolinate , 1972 .

[134]  E. Oldfield,et al.  Solid-state scandium-45, yttrium-89, and lanthanum-139 nuclear magnetic resonance spectroscopy , 1987 .

[135]  C. Hilbers,et al.  Lanthanide shift reagents. II. Shift mechanisms , 1977 .

[136]  Dudley H. Williams,et al.  Nuclear gyromagnetic ratios. II , 1949 .

[137]  M. Botta,et al.  An NMR relaxation study of aqueous solutions of Gd(III) chelates , 1991 .

[138]  C. Dobson,et al.  Paramagnetic shift probes in high-resolution solid-state NMR , 1987, Nature.

[139]  L. Koreneva,et al.  Use of luminescence spectra of adducts of europium β -diketonates with methyl-substituted pyridines in interpreting NMR data obtained by the use of lanthanide shift reagents , 1982 .

[140]  Keikichi G. Nakamura,et al.  A Nuclear Magnetic Relaxation of 139La in Ionic Aqueous Solutions , 1971 .

[141]  T. Wenzel NMR Shift Reagents , 1987 .

[142]  R. Lenkinski,et al.  Aqueous shift reagents for high-resolution cationic nuclear magnetic resonance. 2. 25Mg, 39K, and 23Na resonances shifted by chelidamate complexes of dysprosium(III) and thulium(III) , 1983 .

[143]  J. Kido,et al.  Europium (S,S)-ethylenediamine-N,N'-disuccinate as a chiral lanthanide shift reagent for aqueous solutions , 1991 .

[144]  M. Botta,et al.  Solution and Solid-State Characterization of Highly Rigid, Eight-Coordinate Lanthanide(III) Complexes of a Macrocyclic Tetrabenzylphosphinate , 1994 .

[145]  H. Kagan,et al.  Tetrahedron report number 213 , 1986 .

[146]  C. N. Reilley,et al.  Separation of contact and dipolar lanthanide induced nuclear magnetic resonance shifts: evaluation and application of some structure independent methods , 1976 .

[147]  J. Bünzli,et al.  139La NMR and quantitative FT-IR investigation of the interaction between Ln(III) ions and various anions in organic solvents , 1987 .

[148]  Joop A. Peters,et al.  Multinuclear magnetic resonance study of the complexation of lanthanide(III) cations with tetrahydropyran-2-methanol , 1992 .

[149]  J. Perry,et al.  Structure elucidation with lanthanide-induced shifts. The use of bound shifts and high-symmetry substrates , 1976 .

[150]  D. Chadwick,et al.  Conformational analysis—III: A lanthanide induced shift (LIS) NMR investigation of benzaldehyde, and thiophen- and furan-2-aldehyde , 1982 .

[151]  Nicolaas Bloembergen,et al.  Proton Relaxation Times in Paramagnetic Solutions. Effects of Electron Spin Relaxation , 1961 .

[152]  D. Evans,et al.  Lanthanide shift reagents for alkenes , 1975 .

[153]  P. Anelli,et al.  NMR Evidence of a Long Exchange Lifetime for the Coordinated Water in Ln(III)-Bis(methyl amide)-DTPA Complexes (Ln = Gd, Dy) , 1994 .

[154]  C. Dobson,et al.  High resolution 13C MAS NMR spectra of paramagnetic lanthanide complexes , 1990 .

[155]  Raymond E. Davis,et al.  Interpretation of the pseudocontact model for nuclear magnetic resonance shift reagents. I. Agreement factor, R , 1972 .

[156]  A. Sherry,et al.  Dy(DOTP)5-: A new, stable 23Na shift reagent , 1988 .

[157]  C. Springer,et al.  Bulk magnetic susceptibility shifts in nmr studies of compartmentalized samples: use of paramagnetic reagents , 1990, Magnetic resonance in medicine.

[158]  R. Brasch,et al.  Rationale and applications for macromolecular Gd‐based contrast agents , 1991, Magnetic resonance in medicine.

[159]  N. A. Sörensen,et al.  Structural Studies on the Rare Earth Carboxylates. 4. The Crystal and Molecular Structure of Orthorhombic Trisodium Tris(pyridine-2,6-dicarboxylato)ytterbiumate(III)-14-hydrate. , 1972 .

[160]  R. Pain,et al.  New techniques in biophysics and cell biology , 1973 .

[161]  C. C. Hinckley Paramagnetic shifts in solutions of cholesterol and the dipyridine adduct of trisdipivalomethanatoeuropium. 3. A shift reagent. , 1969, Journal of the American Chemical Society.

[162]  E. Belorizky,et al.  NMR study of spectral densities over a large frequency range for intermolecular relaxation in liquids: Pair correlation effects , 1983 .

[163]  R. Muller,et al.  Preparation, physico-chemical characterization, and relaxometry studies of various gadolinium(III)-DTPA-bis(amide) derivatives as potential magnetic resonance contrast agents. , 1995, Magnetic resonance imaging.

[164]  H. Sternlicht Nuclear Relaxation Induced by Paramagnetic Ions Having Anisotropic g Factors , 1965 .

[165]  D. J. Raber,et al.  Structure elucidation with lanthanide-induced shifts. 10. Generation of atomic coordinates: empirical force field calculations vs. other methods , 1981 .

[166]  H. Weinmann,et al.  A new lipophilic gadolinium chelate as a tissue‐specific contrast medium for MRI , 1991, Magnetic resonance in medicine.

[167]  F. Rossotti,et al.  Electron relaxation rates of lanthanide aquo-cations , 1980 .

[168]  R. Passariello,et al.  Comparison of Gd-BOPTA with Gd-DTPA in MR imaging of rat liver. , 1990, Radiology.

[169]  J. Desreux,et al.  Crystal and molecular structure of sodium aqua(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetato)europate(III) tetrahydrate Na+(EuDOTA.H2O)-.4H2O, and its relevance to NMR studies of the conformational behavior of the lanthanide complexes formed by the macrocyclic ligand DOTA , 1984 .

[170]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[171]  P. Sadler,et al.  Use of Paramagnetic Chelated Metal Derivatives of Polysaccharides and Spin‐Labeled Polysaccharides as Contrast Agents in Magnetic Resonance Imaging , 1991, Magnetic resonance in medicine.

[172]  T. Wenzel,et al.  The shift mechanism of binuclear lanthanide(III)-silver(I) NMR shift reagents , 1987 .

[173]  R. Sievers,et al.  New nuclear magnetic resonance shift reagents , 1973 .

[174]  A. Sherry,et al.  Influence of global ischemia on intracellular sodium in the perfused rat heart , 1990, Magnetic resonance in medicine.

[175]  W. H. Pirkle,et al.  Use of achiral shift reagents to indicate relative stabilities of diastereomeric solvates , 1975 .

[176]  V. Lynch,et al.  Synthesis and structural characterization of lanthanide(III) texaphyrins , 1993 .

[177]  J. Desreux Nuclear magnetic resonance spectroscopy of lanthanide complexes with a tetraacetic tetraaza macrocycle. Unusual conformation properties , 1980 .

[178]  A. Fratiello,et al.  A hydrogen-1, chlorine-35, and lanthanum-139 NMR coordination study of the lanthanum (III) ion in aqueous solvent mixtures , 1989 .

[179]  G. N. Mar,et al.  Proton spin relaxation for the nonlabile coordinated chelate in lanthanide shift reagents , 1982 .

[180]  D. J. Raber,et al.  Structure elucidation with lanthanide-induced shifts. 11. Analysis of alkyl-substituted benzonitriles , 1982 .

[181]  M. Tsutsui,et al.  Organolanthanides and Organoactinides , 1971 .

[182]  Joop A. Peters,et al.  Temperature dependence of the lanthanide-induced shifts, structure, and dynamics of adducts of quinuclidine and Ln(fod)3 chelates as studied by variable-temperature NMR shift and relaxation measurements , 1982 .

[183]  J. Kido,et al.  A New Chiral Shift Reagent for Aqueous Solutions: Eu{(S,S)-Ethylenediamine-N,N′-Disuccinate}, Eu(EDDS) , 1990 .

[184]  D. J. Raber,et al.  Structure elucidation with lanthanide induced shifts. 7—development of a reliable method for structure evaluation and the application to organic nitriles , 1981 .

[185]  V. Lynch,et al.  1H NMR Spectroscopic Study of Paramagnetic Lanthanide(III) Texaphyrins. Effect of Axial Ligation , 1995 .

[186]  R. Lenkinski Lanthanide Complexes of Peptides and Proteins , 1984 .

[187]  S. Meiboom,et al.  Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .

[188]  M. Guéron,et al.  Nuclear relaxation in macromolecules by paramagnetic ions: a novel mechanism , 1975 .

[189]  Ivano Bertini,et al.  Nuclear magnetic resonance of paramagnetic metalloproteins , 1993 .

[190]  J. Reuben Chiral interactions in aqueous solution mediated by lanthanoid ions. N.m.r. spectral resolution of enantiomeric nuclei , 1979 .

[191]  J. M. Garrison,et al.  pH dependence of relaxivities and hydration numbers of gadolinium(III) complexes of macrocyclic amino carboxylates , 1990 .

[192]  I. Solomon Relaxation Processes in a System of Two Spins , 1955 .

[193]  C. S. Springer,et al.  Aqueous shift reagents for high-resolution cationic nuclear magnetic resonance , 1982 .

[194]  B. Jenkins,et al.  Solution structure and dynamics of lanthanide(III) complexes of diethylenetriaminepentaacetate: a two-dimensional NMR analysis , 1988 .

[195]  G. Nicastro,et al.  Water proton relaxation for some lanthanide aqua ions in solution , 1993 .

[196]  C. Poole,et al.  NUCLEAR MAGNETIC RESONANCE OF ALUMINA CONTAINING TRANSITION METALS , 1963 .

[197]  D. J. Raber,et al.  Structure elucidation with lanthanide‐induced shifts. 4—Bound shifts vs relative shifts , 1978 .

[198]  R. Lauffer,et al.  Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design , 1987 .

[199]  J. Reuben,et al.  Longitudinal relaxation in spin 7/2 systems. Frequency dependence of lanthanum-139 relaxation times in protein solutions as a method of studying macromolecular dynamics , 1976 .

[200]  M. F. Ottaviani,et al.  Magnetic‐Field‐Dependent Electronic Relaxation of Gd3+ in Aqueous Solutions of the Complexes [Gd(H2O)8]3+, [Gd(propane‐1,3‐diamine‐N,N,N′,N′‐tetraacetate)(H2O)2]−, and [Gd(N,N′‐bis[(N‐methylcarbamoyl)methyl]‐3‐azapentane‐1,5‐diamine‐3,N,N′‐triacetate)(H2O)] of interest in magnetic‐resonance imaging , 1993 .

[201]  G. P. Moss,et al.  Pseudo-contact contributions to lanthanide-induced nuclear magnetic resonance shifts , 1972 .

[202]  Y. Sasaki,et al.  The europium(III)-R-propylenediaminetetra-acetate ion: a promising chiral shift reagent for 1 H n. m. r. spectroscopy in aqueous solution , 1984 .

[203]  D. Mccain,et al.  A preliminary report of the coordination of lanthanum(III) in lanthanum chloride-methanol solutions , 1976 .

[204]  W. C. Hamilton Significance tests on the crystallographic R factor , 1965 .

[205]  J. A. Cunningham,et al.  Structures of europium complexes and implications in lanthanide nuclear magnetic resonance shift reagent chemistry , 1980 .

[206]  E. Oldfield,et al.  Solid-state spin-echo Fourier transform NMR of 39K and 67Zn salts at high field , 1986 .

[207]  M. Bogyo,et al.  Lanthanide-Cyclodextrin Complexes as Probes for Elucidating Optical Purity by NMR Spectroscopy , 1994 .

[208]  G. Vanderkooi,et al.  Conformational analysis of N,N‐diisopropylamides by combined use of n.m.r. lanthanide‐induced shifts and conformational energy calculations , 1977 .

[209]  G. Shires,et al.  Thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) as a 23Na shift reagent for the in vivo rat liver. , 1993, Biochemistry.

[210]  A. J. Vega,et al.  Nuclear relaxation processes of paramagnetic complexes The slow-motion case , 1976 .

[211]  I. Lázár,et al.  Kinetics of Formation and Dissociation of Lanthanide(III)-DOTA Complexes , 1994 .

[212]  H. A. Rockefeller,et al.  Complexes of nucleophiles with rare earth chelates. II. Self association and adduct formation of the lanthanide tris(1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6-octanedionate) chelates proseodymium(fod)3 and europium(fod)3 , 1974 .

[213]  M. Botta,et al.  Determination of metal–proton distances and electronic relaxation times in lanthanide complexes by nuclear magnetic resonance spectroscopy , 1992 .

[214]  J. Wittenberg,et al.  Gd-DOTA: characterization of a new paramagnetic complex. , 1988, Radiology.

[215]  Joop A. Peters,et al.  Potential causes of erroneous results of analysis of lanthanide-induced shifts: contamination of Ln(fod)3 NMR shift reagents with Ln(fod)3.Mfod and self-association of Ln(fod)3 , 1981 .

[216]  Joop A. Peters,et al.  Analysis of multinuclear lanthanide-induced shifts. 1. Investigations of some approximations in the procedure for separation of diamagnetic, contact, and pseudocontact shifts , 1985 .

[217]  M. Hirayama,et al.  The Analysis of Lanthanoid-induced 13C Shifts for Naphthylamines. Contact Shifts Induced by Gd-chelates and the Spin-delocalization Mechanism , 1982 .

[218]  F. Capozzi,et al.  Assignment of Pseudo‐contact‐shifted 1H NMR resonances in the EF site of Yb3 +‐substituted rabbit parvalbumin through a combination of 2D techniques and magnetic susceptibility tensor determination , 1993 .

[219]  S. H. Koenig,et al.  Evaluation of polyaza macrocyclic methylene phosphonate chelates of Gd3+ ions as MRI contrast agents , 1989, Magnetic resonance in medicine.

[220]  Joop A. Peters,et al.  Halogen substituted adamantanones. Structural studies with lanthanide shift reagents , 1988 .

[221]  A. Sherry,et al.  Lanthanum-139 nuclear magnetic resonance studies of polyaminocarboxylate-lanthanum complexes in aqueous solution , 1986 .

[222]  H. Pfeifer Der Translationsanteil der Protonenrelaxation in wäßrigen Lösungen paramagnetischer Ionen , 1961 .

[223]  L. Vallarino,et al.  X-ray crystal structures and nuclear magnetic resonance spectra of macrocyclic complexes of neodymium(III) and europium(III) , 1990 .

[224]  Raymond E. Davis,et al.  Evaluation of lanthanide-induced carbon-13 contact vs. pseudocontact nuclear magnetic resonance shifts [7] , 1973 .

[225]  M. Botta,et al.  Inclusion complexes between β‐cyclodextrin and β‐benzyloxy‐α‐propionic derivatives of paramagnetic DOTA‐ and DPTA‐Gd(III) complexes , 1991 .

[226]  A. Sherry,et al.  Separation of contact and pseudocontact contributions to 13C lanthanide induced shifts in non-axially-symmetric lanthanide ethylenediaminetetraacetate chelates , 1980 .

[227]  C. Dobson,et al.  Structural information from NMR studies of paramagnetic solids; 23Na MAS spectra of sodium lanthanide salts of ethylenediaminetetraacetic acid , 1992 .

[228]  K. Raymond,et al.  Solution Structure and Dynamics of Lanthanide Complexes of the Macrocyclic Polyamino Carboxylate DTPA-dien. NMR Study and Crystal Structures of the Lanthanum(III) and Europium(III) Complexes , 1994 .

[229]  S. Hoeft,et al.  Struktur und Dynamik von Lanthanoid-Tetraazacyclododecantetraacetat-(DOTA-)Komplexen in Lösung , 1993 .

[230]  P. Pyykkö,et al.  On the theory of pseudocontact N.M.R. shifts due to lanthanide complexes , 1973 .

[231]  R. M. Golding,et al.  An analysis of N.M.R. shifts in lanthanide complexes , 1977 .

[232]  Joop A. Peters,et al.  The synthesis of polyhydroxycarboxylates Part III. Lanthanide(III) catalyzed addition of glycolate to —maleate a kinetic study , 1991 .

[233]  C. Geraldes,et al.  Nucleotide Torsional Flexibility in Solution and the Use of the Lanthanides as Nuclear‐Magnetic‐Resonance Conformational Probes , 1978 .

[234]  C. N. Reilley,et al.  Aggregation studies of some nuclear magnetic resonance shift reagents by vapor-phase osmometry , 1972 .

[235]  B. Perly,et al.  Conformation and dynamics of flexible molecules from nuclear relaxation induced by Dy3+ and Gd3+ , 1982 .

[236]  I. Bertini,et al.  The effect of magnetic anisotropy on the longitudinal nuclear relaxation time in paramagnetic systems , 1990 .

[237]  J. Shapiro,et al.  Measurement of intracellular sodium with NMR methods , 1991 .

[238]  R. London,et al.  Conformation examination of uridine diphosphoglucose using lanthanide-nitrilotriacetate chelates as shift probes. , 1978, Biochemistry.

[239]  Raj K. Gupta,et al.  Direct observation of resolved resonances from intra- and extracellular sodium-23 ions in NMR studies of intact cells and tissues using dysprosium(III)tripolyphosphate as paramagnetic shift reagent☆ , 1982 .

[240]  J. E. Page Advances in Biochemistry , 1949 .

[241]  H. Brittain,et al.  Luminescence and NMR studies of the conformational isomers of lanthanide complexes with an optically active polyaza polycarboxylic macrocycle , 1984 .

[242]  W. C. Brumley,et al.  Effects of random coordinate error in analyses of lanthanide-induced pseudocontact shifts. Axially symmetric case , 1976 .

[243]  Xiangyun Wang,et al.  A kinetic investigation of the lanthanide DOTA chelates. Stability and rates of formation and of dissociation of a macrocyclic gadolinium(III) polyaza polycarboxylic MRI contrast agent , 1992 .

[244]  G. Laurenczy,et al.  Variable pressure spectrophotometric equilibrium and 139La NMR kinetic studies of lanthanum (III) ion complex formation with 2,6-dicarboxy-4-hydroxypyridine in aqueous solution , 1989 .

[245]  Joop A. Peters,et al.  Use of fluorescent probes for the investigation of solutions: the case of europium—carboxymethoxysuccinate complexes , 1992 .

[246]  C. Dobson,et al.  Ethylenediaminetetra-acetato-lanthanate(III), -praesodimate(III), -europate(III), and -gadolinate(III) complexes as nuclear magnetic resonance probes of the molecular conformations of adenosine 5′- monophosphate and cytidine 5′-monophosphate in solution , 1974 .

[247]  Joop A. Peters Analysis of multinuclear lanthanide-induced shifts. 4. Some consequences of the lanthanide contraction , 1986 .

[248]  Joop A. Peters,et al.  Synthesis of polyhydroxy carboxylates. 5. Metal ion catalyzed O-alkylation of ethylene glycol with maleate. A multinuclear NMR study of the lanthanide(III) complexes present in the reaction mixture of the lanthanide(III)-catalyzed reaction , 1990 .

[249]  Joop A. Peters Multinuclear NMR study of lanthanide(III) complexes of diethylenetriaminepentaacetate , 1988 .

[250]  M. Botta,et al.  Solution structure and dynamics of DTPA-Ln(III) complexes (DTPA=diethylene triamine penta acetate; LnLa, Pr, Eu) , 1990 .

[251]  V. Alexander Design and Synthesis of Macrocyclic Ligands and Their Complexes of Lanthanides and Actinides , 1995 .

[252]  S. C. Chu,et al.  Aqueous shift reagents for high-resolution cation NMR. V. Thermodynamics of interaction of DyTTHA3− with Na+, K+, Mg 2+ , and Ca 2+ , 1990 .

[253]  A. Sherry,et al.  Tm(DOTP)5−: A 23Na+ shift agent for perfused rat hearts , 1990, Magnetic resonance in medicine.

[254]  M. Schaefer,et al.  A new macrocyclic MRI contrast agent: Gd MCTA complex , 1991, Magnetic resonance in medicine.

[255]  Joop A. Peters,et al.  Lanthanide(III) salts of (S)-carboxymethyloxysuccinic acid: chiral lanthanide shift reagents for aqueous solution , 1983 .

[256]  B. Jenkins,et al.  2D NMR studies of paramagnetic lanthanide(III)-diethylenetriaminepentaacetate complexes , 1988 .

[257]  G. Molander Application of lanthanide reagents in organic synthesis , 1992 .

[258]  C. N. Reilley,et al.  Evaluation of contact and dipolar contributions to proton and carbon-13 paramagnetic NMR shifts in axially symmetric lanthanide chelates , 1976 .

[259]  R. Ramasamy,et al.  Aqueous shift reagents for 7Li+ NMR transport studies in cells , 1989 .

[260]  A. Sherry,et al.  Nuclear magnetic resonance structural studies of an axially symmetric lanthanide ion chelate in aqueous solution , 1986 .

[261]  B. Nordén,et al.  Structural Studies on the Rare Earth Carboxylates. 11. On the Crystal Structure of Hexagonal Trisodium Tris(pyridine-2,6-dicarboxylato)ytterbate(III) Mono(sodium perchlorate) Decahydrate. , 1972 .

[262]  F. Rossotti,et al.  Studies of lanthanide(III) pyridine-2,6-dicarboxylate complexes in aqueous solution. Part 1. Structures and 1H nuclear magnetic resonance spectra , 1980 .

[263]  M. Kainosho,et al.  Tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octamedionato)gadolinium (Gd(fod)3)-induced contact shifts. Versatile new method to estimate contact and pseudocontact shift contributions to observed lanthanide-induced shifts , 1975 .

[264]  R. Dwek,et al.  The lanthanide cations as nuclear magnetic resonance probes of biological systems , 1970 .

[265]  G. Laurenczy,et al.  Coordination equilibria and water exchange kinetics of lanthanide(III) propylenediaminetetraacetates and other magnetic resonance imaging related complexes , 1995 .

[266]  A. D. Watson The use of gadolinium and dysprosium chelate complexes as contrast agents for magnetic resonance imaging , 1994 .

[267]  J. Klaveness,et al.  Water-soluble polysaccharides as carriers of paramagnetic contrast agents for magnetic resonance imaging: synthesis and relaxation properties. , 1991, Carbohydrate research.

[268]  J. Reuben Structural information from chemical shifts in lanthanide complexes , 1982 .

[269]  D. J. Raber,et al.  1-tert-Butyl-2-adamantanone , 1983 .

[270]  R. Sievers,et al.  New superior paramagnetic shift reagents for nuclear magnetic resonance spectral clarification , 1971 .

[271]  Nicolaas Bloembergen,et al.  Proton Relaxation Times in Paramagnetic Solutions , 1957 .

[272]  M. Frechette Characterization of the 2,2′-bipyridine chelates of lanthanum(III) in acetonitrile. A 1H, 13C, 17O, and 139La NMR study , 1993 .

[273]  Joop A. Peters,et al.  Lanthanide(III)-catalysed addition of glycolate to maleate. Investigation of intermediates using multinuclear magnetic resonance spectroscopy , 1988 .

[274]  Jonathan L. Sessler,et al.  Texaphyrins: Synthesis and Applications , 1994 .

[275]  G. A. Elgavish,et al.  Shift-Reagent-Aided 23Na NMR Spectroscopy in Cellular, Tissue, and Whole-Organ Systems , 1992 .

[276]  L. Hall,et al.  Use of Lanthanide Nuclear Magnetic Resonance Shift Reagents in Determination of Molecular Configuration , 1973 .

[277]  John S. Waugh,et al.  Measurement of Spin Relaxation in Complex Systems , 1968 .

[278]  L. Helm,et al.  High-pressure NMR study. 38. Water-exchange mechanisms on the terbium to thulium octaaqualanthanide(III) ions: a variable-pressure oxygen-17 NMR study , 1989 .

[279]  R. G. Kidd Nuclear Shielding of the Transition Metals , 1980 .

[280]  T. C. Morrill Lanthanide shift reagents in stereochemical analysis , 1986 .

[281]  F. P. Auteri,et al.  USE OF EPR TO INVESTIGATE ROTATIONAL DYNAMICS OF PARAMAGNETIC CONTRAST AGENTS , 1994 .

[282]  Joop A. Peters,et al.  Determination of stability constants of metal complexes from NMR chemical shifts and relaxation rates using a spreadsheet computer program , 1994 .

[283]  M. Gochin,et al.  Protein structure refinement based on paramagnetic NMR shifts: Applications to wild‐type and mutant forms of cytochrome c , 1995, Protein science : a publication of the Protein Society.

[284]  A. Martell,et al.  New multidentate ligands. IX. Metal chelates of triethylenetetraminehexaacetic acid with trivalent metal ions , 1969 .

[285]  Joop A. Peters,et al.  Analysis of multinuclear lanthanide-induced shifts. Part 2. The geometry of ketone binding to lanthanides , 1986 .

[286]  L. Nordenskiöld,et al.  Theory of nuclear spin relaxation in paramagnetic systems in solution , 1985 .

[287]  S. Angyal Complexes of Metal Cations with Carbohydrates in Solution , 1991 .

[288]  L. Kay,et al.  Location of divalent ion sites in acyl carrier protein using relaxation perturbed 2D NMR , 1988, FEBS letters.

[289]  J. Kintzinger,et al.  Selection of shift reagents for 17O NMR. Application to line assignments , 1980 .

[290]  J. Reuben,et al.  Nuclear Magnetic Resonance Studies of Solutions of the Rare‐Earth Ions and Their Complexes. IV. Concentration and Temperature Dependence of the Oxygen‐17 Transverse Relaxation in Aqueous Solutions , 1969 .

[291]  B. Feringa,et al.  Asymmetric Synthesis of New Chiral Europium N,N'-Disuccinate Complexes: Shift Reagents for Aqueous Solutions and Application in the Enantiomeric Excess Determination of Amino Acids , 1994 .

[292]  Joop A. Peters,et al.  Solution Phase Chemistry of Lanthanide Complexes. 12. 1:1 and 1:2 Lanthanide Complexes with s-Carboxymethoxysuccinic Acid , 1991 .

[293]  C. Luchinat Relaxometry and paramagnetic metal ions in biological systems , 1993 .

[294]  Maurizio Grandi,et al.  Synthesis, characterization, and 1/T1 NMRD profiles of gadolinium(III) complexes of monoamide derivatives of DOTA-like ligands. X-ray structure of the 10-[2-[[2-hydroxy-1-(hydroxymethyl)ethyl]amino]-1-[(phenylmethoxy)methyl]-2-oxoethyl]-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid-gadolinium( , 1992 .