Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density.

We use the nonstandard-finite-difference time-domain (NS-FDTD) method to investigate the interaction of light with the complicated microstructures in the Morpho butterfly scales, which produce the well-known brilliant blue coloring. The NS-FDTD algorithm is particularly suitable to analyze such complex structures because the calculation can be performed in a short time with high accuracy on a relatively coarse numerical grid. We analyze (1) the microstructure obtained directly by binarizing an electron microgram of the cross section of a scale, (2) the reflection and diffraction properties of three model structures--flat, alternating, and tree-shaped alternating multilayers, and (3) an array of alternating multilayers with random noise superposed on the height of the structures. We found that the actual microstructure well reproduced the reflection spectrum in a blue region by integrating the reflection intensities over all the reflection angles. Under normal incidence, the flat multilayer mainly stresses on multilayer interference except for shorter wavelengths, while alternating multilayer rather enhances the effect of diffraction grating due to longitudinally repeating structure by strongly suppressing the reflection toward the normal direction. In the array of alternating multilayers, the reflection into larger angles is considerably suppressed and the spectral shape becomes different from that expected for a single alternating multilayer. This suppression mainly comes from the scattering of reflected light by adjacent structures, which is particularly prominent for the TM mode. Thus a clear difference between the TE and TM modes is observed with respect to the origin of spectral shape, though the obtained spectra are similar to each other. Finally, the polarization dependence of the reflection and the importance of the alternating multilayer are discussed.

[1]  Makio Akimoto,et al.  Microstructures and Optical Properties of Scales of Butterfly Wings , 1996 .

[2]  J. B. Cole A high-accuracy realization of the Yee algorithm using non-standard finite differences , 1997 .

[3]  Lord Rayleigh,et al.  On the Reflection of Light from a Regularly Stratified Medium , 1917 .

[4]  K. Gentil Elektronenmikroskopische Untersuchung des Feinbaues Schillernder Leisten von Morpho-Schuppen , 1942, Zeitschrift für Morphologie und Ökologie der Tiere.

[5]  A. Richards,et al.  An Electron Microscope Study of Some Structural Colors of Insects , 1942 .

[6]  A. M. Young,et al.  Wing coloration and reflectance in Morpho butterflies as related to reproductive behavior and escape from avian predators , 1971, Oecologia.

[7]  Andrew R. Parker,et al.  Structural colour in animals—simple to complex optics , 2006 .

[8]  Shuichi Kinoshita,et al.  Wavelength–selective and anisotropic light–diffusing scale on the wing of the Morpho butterfly , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[9]  Shuichi Kinoshita,et al.  Physics of structural colors , 2008 .

[10]  L. Plattner Optical properties of the scales of Morpho rhetenor butterflies: theoretical and experimental investigation of the back-scattering of light in the visible spectrum , 2004, Journal of The Royal Society Interface.

[11]  M. Srinivasarao Nano-Optics in the Biological World: Beetles, Butterflies, Birds, and Moths. , 1999, Chemical reviews.

[12]  James J. Cowan Aztec surface-relief volume diffractive structure , 1990 .

[13]  H. Onslow,et al.  On a Periodic Structure in Many Insect Scales, and the Cause of Their Iridescent Colours , 1923 .

[14]  S. Kinoshita,et al.  Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[15]  S Enoch,et al.  Morpho butterflies wings color modeled with lamellar grating theory. , 2001, Optics express.

[16]  S. Berthier,et al.  Morphological structure and optical properties of the wings of Morphidae , 2006 .

[17]  Shuichi Kinoshita,et al.  Structural colors in nature: the role of regularity and irregularity in the structure. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[18]  James B. Cole,et al.  High-accuracy Yee algorithm based on nonstandard finite differences: new developments and verifications , 2002 .

[19]  C. W. Mason,et al.  Structural Colors in Insects. II , 1926 .

[20]  Albert A. Michelson,et al.  LXI. On metallic colouring in birds and insects , 1911 .

[21]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[22]  W. Lippert,et al.  Über lamellare feinstrukturen bei den schillerschuppen der schmetterlinge vom urania- und morpho-typ , 2004, Zeitschrift für Morphologie und Ökologie der Tiere.

[23]  J. Gardner,et al.  Sem comparison of morpho butterfly dorsal and ventral scales , 1995, Microscopy research and technique.

[24]  Ernest Merritt,et al.  A Spectrophotometric Study of Certain Cases of Structural Color1 , 1925 .

[25]  Shuichi Kinoshita,et al.  Photophysics of Structural Color in the Morpho Butterflies , 2002 .

[26]  J. B. Cole,et al.  Colour characterization of a Morpho butterfly wing-scale using a high accuracy nonstandard finite-difference time-domain method. , 2007, Micron.

[27]  H. Ghiradella,et al.  Structure of Iridescent Lepidopteran Scales: Variations on Several Themes , 1984 .

[28]  P. K. C. Pillai Spectral Reflection Characteristics of Morpho Butterfly Wing , 1968 .

[29]  F. Süffert Morphologie und optik der schmetterlingsschuppen, insbesondere die schillerfarben der schmetterlinge , 1924, Zeitschrift für Morphologie und Ökologie der Tiere.

[30]  Leon Poladian,et al.  Exaggeration and suppression of iridescence: the evolution of two-dimensional butterfly structural colours , 2006, Journal of The Royal Society Interface.

[31]  Serge Berthier,et al.  Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus , 2003 .

[32]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[33]  R. Wootton,et al.  Quantified interference and diffraction in single Morpho butterfly scales , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[34]  Shuichi Kinoshita,et al.  Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly , 2006, Proceedings of the Royal Society B: Biological Sciences.

[35]  H. Ghiradella,et al.  Development of butterfly scales. II. Struts, lattices and surface tension , 1976, Journal of morphology.

[36]  Rodolfo H. Torres,et al.  Anatomically diverse butterfly scales all produce structural colours by coherent scattering , 2006, Journal of Experimental Biology.

[37]  H. Ghiradella,et al.  Structure of butterfly scales: Patterning in an insect cuticle , 1994, Microscopy research and technique.

[38]  Ioannis N. Miaoulis,et al.  Spectral imaging, reflectivity measurements, and modeling of iridescent butterfly scale structures , 2001 .

[39]  Raymond J. Luebbers,et al.  A two-dimensional time-domain near-zone to far-zone transformation , 1991 .

[40]  Lord Rayleigh,et al.  VII. On the optical character of some brilliant animal colours , 1919 .