Nonholonomic stabilization with collision avoidance for mobile robots

This paper presents a motion planner and nonholonomic controller for a mobile robot, with global collision avoidance and convergence properties. An appropriately designed (dipolar) potential field is combined with discontinuous state feedback. A new class of Lyapunov functions is introduced and used for nonholonomic navigation. The obstacle avoidance and global asymptotic stability properties are verified through simulations.

[1]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[2]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[3]  Jean-Baptiste Pomet Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift , 1992 .

[4]  A. Astolfi Discontinuous control of nonholonomic systems , 1996 .

[5]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[6]  Claude Samson,et al.  Time-varying Feedback Stabilization of Car-like Wheeled Mobile Robots , 1993, Int. J. Robotics Res..

[7]  Ilya Kolmanovsky,et al.  Developments in nonholonomic control problems , 1995 .

[8]  O. J. Sordalen,et al.  Exponential stabilization of mobile robots with nonholonomic constraints , 1992 .

[9]  Philippe Martin,et al.  Feedback linearization and driftless systems , 1994, Math. Control. Signals Syst..

[10]  M. Fliess,et al.  Flatness, motion planning and trailer systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[11]  Richard M. Murray,et al.  A motion planner for nonholonomic mobile robots , 1994, IEEE Trans. Robotics Autom..

[12]  R. Murray,et al.  Exponential stabilization of driftless nonlinear control systems using homogeneous feedback , 1997, IEEE Trans. Autom. Control..

[13]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[14]  Eduardo Sontag,et al.  Remarks on control Lyapunov functions for discontinuous stabilizing feedback , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[15]  J. Canny,et al.  Nonholonomic Motion Planning , 1992 .

[16]  Kostas J. Kyriakopoulos,et al.  Nonholonomic motion planning for mobile manipulators , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[17]  A. Bloch,et al.  Control and stabilization of nonholonomic dynamic systems , 1992 .

[18]  S. LaValle,et al.  Motion Planning , 2008, Springer Handbook of Robotics.

[19]  Kostas J. Kyriakopoulos,et al.  Coordinating the Motion of a Manipulator and a Mobile Base in Tree Environments , 2000 .