Ultrahard carbon film from epitaxial two-layer graphene

[1]  J. Kong,et al.  Raman evidence for pressure-induced formation of diamondene , 2017, Nature Communications.

[2]  V. Cappello,et al.  On the thermodynamic path enabling a room-temperature, laser-assisted graphite to nanodiamond transformation , 2016, Scientific Reports.

[3]  Tae Hoon Choi,et al.  Synergetic interplay between pressure and surface chemistry for the conversion of sp2-bonded carbon layers into sp3-bonded carbon films , 2016 .

[4]  E. Riedo,et al.  Elastic coupling between layers in two-dimensional materials. , 2015, Nature materials.

[5]  Kenji Watanabe,et al.  Switchable friction enabled by nanoscale self-assembly on graphene , 2015, Nature Communications.

[6]  D. Parks,et al.  Strain shielding from mechanically activated covalent bond formation during nanoindentation of graphene delays the onset of failure. , 2015, Nano letters.

[7]  Tao Yu,et al.  Mechanism for direct graphite-to-diamond phase transition , 2014, Scientific Reports.

[8]  L. Chernozatonskii,et al.  Phase diagram of quasi-two-dimensional carbon, from graphene to diamond. , 2014, Nano letters.

[9]  P. Sorokin,et al.  Lonsdaleite Films with Nanometer Thickness. , 2014, The journal of physical chemistry letters.

[10]  R. Ruoff,et al.  Conversion of multilayer graphene into continuous ultrathin sp3-bonded carbon films on metal surfaces , 2013, Scientific Reports.

[11]  F. Abild‐Pedersen,et al.  Interlayer carbon bond formation induced by hydrogen adsorption in few-layer supported graphene. , 2013, Physical review letters.

[12]  E. Riedo,et al.  Morphology dependence of radial elasticity in multiwalled boron nitride nanotubes , 2012, 1305.2144.

[13]  E. Riedo,et al.  Room-temperature metastability of multilayer graphene oxide films. , 2012, Nature materials.

[14]  B. Neves,et al.  Room‐Temperature Compression‐Induced Diamondization of Few‐Layer Graphene , 2011, Advanced materials.

[15]  C. Berger,et al.  Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide , 2011, Proceedings of the National Academy of Sciences.

[16]  Rustam Z. Khaliullin,et al.  Nucleation mechanism for the direct graphite-to-diamond phase transition. , 2011, Nature materials.

[17]  C. Coletti,et al.  Structural and electronic properties of epitaxial graphene on SiC(0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation , 2010 .

[18]  Seth R. Marder,et al.  Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics , 2010, Science.

[19]  L. Chernozatonskii,et al.  Diamond-like C2H nanolayer, diamane: Simulation of the structure and properties , 2009, 1002.0634.

[20]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  Ting Yu,et al.  Thickness-dependent reversible hydrogenation of graphene layers. , 2009, ACS nano.

[22]  E. Riedo,et al.  Tip size effects on atomic force microscopy nanoindentation of a gold single crystal , 2008 .

[23]  Roland Bennewitz,et al.  Local work function measurements of epitaxial graphene , 2008 .

[24]  L. Jastrabík,et al.  Hardness and elastic modulus of amorphous and nanocrystalline SiC and Si films , 2008 .

[25]  Zhong Lin Wang,et al.  Aspect ratio dependence of the elastic properties of ZnO nanobelts. , 2007, Nano letters.

[26]  T. Jaglinski,et al.  Composite Materials with Viscoelastic Stiffness Greater Than Diamond , 2007, Science.

[27]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[28]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[29]  K. Chawla,et al.  Mechanical Behavior of Multilayered Nanoscale Metal‐Ceramic Composites , 2005 .

[30]  E. Riedo,et al.  Radial elasticity of multiwalled carbon nanotubes. , 2005, Physical review letters.

[31]  Peter J. Eng,et al.  Bonding Changes in Compressed Superhard Graphite , 2003, Science.

[32]  D. Young,et al.  Osmium has the lowest experimentally determined compressibility. , 2002, Physical review letters.

[33]  Roger Smith,et al.  Nanoindentation of diamond, graphite and fullerene films , 2000 .

[34]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[35]  E. Tosatti,et al.  Pressure-Induced Transformation Path of Graphite to Diamond. , 1995, Physical review letters.

[36]  J. Narayan,et al.  Laser Method for Synthesis and Processing of Continuous Diamond Films on Nondiamond Substrates , 1991, Science.

[37]  B. T. Kelly,et al.  Physics of Graphite , 1981 .

[38]  H G Drickamer,et al.  Carbon: A New Crystalline Phase , 1963, Science.

[39]  H. Mao,et al.  The pressure-temperature phase and transformation diagram for carbon; updated through 1994 , 1996 .