Numerical tools for geoscience computations: Semiautomatic differentiation—SD
暂无分享,去创建一个
[1] George Trapp,et al. Using Complex Variables to Estimate Derivatives of Real Functions , 1998, SIAM Rev..
[2] Thomas Bewley,et al. On the extension of the complex-step derivative technique to pseudospectral algorithms , 2003 .
[3] David Elizondo,et al. Automatic versus manual model differentiation to compute sensitivities and solve non-linear inverse problems , 2002 .
[4] Jorge J. Moré,et al. Automatic Differentiation Tools in Optimization Software , 2000, ArXiv.
[5] R. Blakely. Potential theory in gravity and magnetic applications , 1996 .
[6] Howard Mark,et al. 54 – Derivatives in Spectroscopy: Part 1 – The Behavior of the Derivative , 2003 .
[7] D. Parasnis,et al. Principles of Applied Geophysics , 1962 .
[8] J. N. Lyness,et al. Numerical Differentiation of Analytic Functions , 1967 .
[9] Joaquim R. R. A. Martins,et al. The complex-step derivative approximation , 2003, TOMS.
[10] Joaquim R. R. A. Martins,et al. AN AUTOMATED METHOD FOR SENSITIVITY ANALYSIS USING COMPLEX VARIABLES , 2000 .
[11] J. N. Lyness. Numerical algorithms based on the theory of complex variable , 1967, ACM National Conference.
[12] J. Uhlig. C. Forsythe and C. B. Moler, Computer Solution of Linear Algebraic Systems. (Series in Automatic Computation) XI + 148 S. Englewood Cliffs, N.J. 1967. Prentice-Hall, Inc. Preis geb. 54 s. net , 1972 .
[13] Peter A. Vanrolleghem,et al. Avoiding the Finite Difference Sensitivity Analysis Deathtrap by Using the Complex-step Derivative Approximation Technique , 2006 .
[14] Bengt Fornberg,et al. Numerical Differentiation of Analytic Functions , 1981, TOMS.
[15] V. N. Vatsa,et al. Computation of sensitivity derivatives of Navier-Stokes equations using complex variables , 2000 .
[16] G. Forsythe,et al. Computer solution of linear algebraic systems , 1969 .
[17] Thomas F. Coleman,et al. ADMIT-1: automatic differentiation and MATLAB interface toolbox , 2000, TOMS.
[18] J. C. Newman,et al. Computationally efficient, numerically exact design space derivatives via the complex Taylor's series expansion method , 2003 .