Mechanical behavior and microstructure evolution during high strain rate deformation of AA7075-T651

[1]  C. Arvieu,et al.  Mechanical behavior and microstructure evolution during deformation of AA7075-T651 , 2021, Materials Science and Engineering: A.

[2]  Yangwei Wang,et al.  Adiabatic shear band localization in an Al–Zn–Mg–Cu alloy under high strain rate compression , 2020 .

[3]  D. Yang,et al.  The Numerical Simulation of Temperature Field in Friction Stir Welding of 7075 Aluminium Alloy , 2020, IOP Conference Series: Materials Science and Engineering.

[4]  M. Hokka,et al.  Effects of Adiabatic Heating and Strain Rate on the Dynamic Response of a CoCrFeMnNi High-Entropy Alloy , 2019, Journal of Dynamic Behavior of Materials.

[5]  Hong He,et al.  Grain structure and precipitate variations in 7003-T6 aluminum alloys associated with high strain rate deformation , 2019, Materials Science and Engineering: A.

[6]  Nikhil Kumar,et al.  High Strain Rate Behavior of Ultrafine Grained AA2519 Processed via Multi Axial Cryogenic Forging , 2019, Metals.

[7]  Lin Hua,et al.  Thermal deformation behavior and processing maps of 7075 aluminum alloy sheet based on isothermal uniaxial tensile tests , 2018, Journal of Alloys and Compounds.

[8]  P. Zhou,et al.  Strain rate and thermal softening effects in shear testing of AA7075-T6 sheet , 2018 .

[9]  Hong He,et al.  Development of adiabatic shearing bands in 7003-T4 aluminum alloy under high strain rate impacting , 2018, Materials Science and Engineering: A.

[10]  Peijie Li,et al.  Effect of strain rate and temperature on dynamic mechanical behavior and microstructure evolution of ultra-high strength aluminum alloy , 2018, Materials Science and Engineering: A.

[11]  Zhichao Sun,et al.  Modeling of continuous dynamic recrystallization of Al-Zn-Cu-Mg alloy during hot deformation based on the internal-state-variable (ISV) method , 2018, International Journal of Plasticity.

[12]  F. Yuan,et al.  Investigation on the plastic work-heat conversion coefficient of 7075-T651 aluminum alloy during an impact process based on infrared temperature measurement technology , 2018 .

[13]  A. Odeshi,et al.  Multiple strengthening sources and adiabatic shear banding during high strain-rate deformation of AISI 321 austenitic stainless steel: effects of grain size and strain rate , 2018 .

[14]  A. Odeshi,et al.  The influence of temper condition on adiabatic shear failure of AA 2024 aluminum alloy , 2017 .

[15]  N. Gupta,et al.  Study of the constitutive behavior of 7075-T651 aluminum alloy , 2017 .

[16]  Ke Huang,et al.  A review of dynamic recrystallization phenomena in metallic materials , 2016 .

[17]  Woei-Shyan Lee,et al.  Deformation behavior and microstructural evolution of 7075-T6 aluminum alloy at cryogenic temperatures , 2016 .

[18]  K. Jonnalagadda,et al.  Thermo-mechanical behavior and bulk texture studies on AA5052-H32 under dynamic compression , 2016 .

[19]  M. Sasso,et al.  High Strain Rate Behaviour of AA7075 Aluminum Alloy at Different Initial Temper States , 2015 .

[20]  Dingni Zhang,et al.  A modified Johnson–Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy , 2015 .

[21]  J. Kajberg,et al.  High‐Temperature Split‐Hopkinson Pressure Bar with a Momentum Trap for Obtaining Flow Stress Behaviour and Dynamic Recrystallisation , 2014 .

[22]  Matthew S. Dargusch,et al.  The dynamic response of a β titanium alloy to high strain rates and elevated temperatures , 2014 .

[23]  He Yang,et al.  Softening mechanism and microstructure evolution of as-extruded 7075 aluminum alloy during hot deformation , 2014 .

[24]  Constantinos Soutis,et al.  Recent developments in advanced aircraft aluminium alloys , 2014 .

[25]  A. Odeshi,et al.  Failure of AA 6061 and 2099 aluminum alloys under dynamic shock loading , 2013 .

[26]  J. Kaufman Understanding the Aluminum Temper Designation System , 2013 .

[27]  Zhiping Xiong,et al.  Effect of Strain Rate on Mechanical Properties of Pure Iron , 2013 .

[28]  J. Kajberg,et al.  Material characterisation using high-temperature Split Hopkinson pressure bar , 2013 .

[29]  Zhiping Xiong,et al.  Effect of Strain Rate on Mechanical Properties of Fe-30Mn-3Si-4Al TWIP Steel , 2012 .

[30]  Ali A. Roostaei,et al.  An investigation into the hot deformation characteristics of 7075 aluminum alloy , 2011 .

[31]  Y. Yang,et al.  Observation of the microstructure in the adiabatic shear band of 7075 aluminum alloy , 2010 .

[32]  X. M. Li,et al.  Self-organization behaviors of shear bands in 7075 T73 and annealed aluminum alloy , 2009 .

[33]  Y. Zeng,et al.  Numerical and experimental studies of self-organization of shear bands in 7075 aluminium alloy , 2008 .

[34]  M. Meyers,et al.  Shear Localization in Dynamic Deformation: Microstructural Evolution , 2008 .

[35]  E. El-Magd,et al.  Characterization, modelling and simulation of deformation and fracture behaviour of the light-weight wrought alloys under high strain rate loading , 2006 .

[36]  H. Miura,et al.  Continuous Dynamic Recrystallization in a Superplastic 7075 Aluminum Alloy , 2002 .

[37]  M. Meyers,et al.  Microstructural evolution in adiabatic shear localization in stainless steel , 2002 .

[38]  M. Meyers,et al.  Self-organization of shear bands in titanium and Ti–6Al–4V alloy , 2002 .

[39]  M. Meyers,et al.  Shear localization and recrystallization in dynamic deformation of 8090 Al-Li alloy , 2001 .

[40]  Chi Feng Lin,et al.  The strain rate and temperature dependence of the dynamic impact properties of 7075 aluminum alloy , 2000 .

[41]  X. Z. Li,et al.  HREM study and structure modeling of the η′ phase, the hardening precipitates in commercial Al–Zn–Mg alloys , 1999 .

[42]  M. E. Kassner,et al.  Current issues in recrystallization: a review , 1997 .

[43]  M. Meyers,et al.  The effect of grain size on the high-strain, high-strain-rate behavior of copper , 1995 .

[44]  Marc A. Meyers,et al.  Evolution of microstructure and shear-band formation in α-hcp titanium , 1994 .

[45]  Marc A. Meyers,et al.  Observation of an adiabatic shear band in AISI 4340 steel by high-voltage transmission electron microscopy , 1990 .

[46]  S. Timothy,et al.  The structure of adiabatic shear bands in metals: A critical review☆ , 1987 .

[47]  A. Ardell,et al.  Precipitation at grain boundaries in the commercial alloy Al 7075 , 1986 .

[48]  A. Ardell,et al.  Microstructures of the commercial 7075 Al alloy in the T651 and T7 tempers , 1983 .

[49]  S. Cousland,et al.  The transition phase η′ in AlZnMg alloys , 1971 .

[50]  L. F. Mondolfo Structure of the aluminium: magnesium: zinc alloys , 1971 .

[51]  V. Weiss,et al.  Materials data handbook, aluminum alloy 7075 , 1967 .

[52]  J. D. Embury,et al.  The nucleation of precipitates: The system Al-Zn-Mg , 1965 .

[53]  N. A. Gjostein,et al.  Structural Changes During the Aging in An Al-Mg-Zn Alloy , 1956 .

[54]  H. Kolsky An Investigation of the Mechanical Properties of Materials at very High Rates of Loading , 1949 .

[55]  R. Davies A critical study of the Hopkinson pressure bar , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[56]  E. A. Starke 24 – Application of modern aluminium alloys to aircraft , 2011 .

[57]  HEAT TREATING ALUMINUM ALLOYS , 2007 .

[58]  Gray,et al.  Classic Split-Hopkinson Pressure Bar Testing , 2000 .

[59]  Chi Feng Lin,et al.  Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures , 1998 .

[60]  Joong-Keun Park,et al.  Precipitate microstructure of peak-aged 7075 Al , 1988 .

[61]  B. Hopkinson A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets , 1914 .