A Flexible Quasi‐Solid‐State Nickel–Zinc Battery with High Energy and Power Densities Based on 3D Electrode Design

A flexible quasi-solid-state Ni-Zn battery is developed by using tiny ZnO nanoparticles and porous ultrathin NiO nanoflakes conformally deposited on hierar chical carbon-cloth-carbon-fiber (CC-CF) as the anode (CC-CF@ZnO) and cathode (CC-CF@NiO), respectively. The device is able to deliver high performance (absence of Zn dendrite), superior to previous reports on aqueous Ni-Zn batteries and other flexible electrochemical energy-storage devices.

[1]  Yang Wang,et al.  A Simple Approach to Boost Capacitance: Flexible Supercapacitors Based on Manganese Oxides@MOFs via Chemically Induced In Situ Self‐Transformation , 2016, Advanced materials.

[2]  Faxing Wang,et al.  An Aqueous Rechargeable Zn//Co3O4 Battery with High Energy Density and Good Cycling Behavior , 2016, Advanced materials.

[3]  Pengfei Yan,et al.  Reversible aqueous zinc/manganese oxide energy storage from conversion reactions , 2016, Nature Energy.

[4]  Yang Zhao,et al.  Recent Developments and Understanding of Novel Mixed Transition‐Metal Oxides as Anodes in Lithium Ion Batteries , 2016 .

[5]  Xin-Bing Cheng,et al.  Dendrite‐Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries , 2016, Advanced materials.

[6]  Yan Yu,et al.  Self‐Supported Nanotube Arrays of Sulfur‐Doped TiO2 Enabling Ultrastable and Robust Sodium Storage , 2016, Advanced materials.

[7]  Zhongwei Chen,et al.  Self-Assembled NiO/Ni(OH)2 Nanoflakes as Active Material for High-Power and High-Energy Hybrid Rechargeable Battery. , 2016, Nano letters.

[8]  Zhiliang Ku,et al.  Aqueous Rechargeable Alkaline CoxNi2-xS2/TiO2 Battery. , 2016, ACS nano.

[9]  Xiaoli Dong,et al.  Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life , 2016, Science Advances.

[10]  Jun Ma,et al.  Ultrafast Alkaline Ni/Zn Battery Based on Ni-Foam-Supported Ni3S2 Nanosheets. , 2015, ACS applied materials & interfaces.

[11]  Kang Xu,et al.  “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries , 2015, Science.

[12]  Hua Zhang,et al.  Conformally deposited NiO on a hierarchical carbon support for high-power and durable asymmetric supercapacitors , 2015 .

[13]  Zhaorong Chang,et al.  Facile synthesis of high tap density ZnO microspheres as advanced anode material for alkaline nickel-zinc rechargeable batteries , 2015 .

[14]  Luhua Jiang,et al.  Superior cycling stability and high rate capability of three-dimensional Zn/Cu foam electrodes for zinc-based alkaline batteries , 2015 .

[15]  Z. Huang,et al.  Three-Dimensional NiCo2O4@Polypyrrole Coaxial Nanowire Arrays on Carbon Textiles for High-Performance Flexible Asymmetric Solid-State Supercapacitor. , 2015, ACS applied materials & interfaces.

[16]  Ruizhi Li,et al.  Carbon‐Stabilized High‐Capacity Ferroferric Oxide Nanorod Array for Flexible Solid‐State Alkaline Battery–Supercapacitor Hybrid Device with High Environmental Suitability , 2015 .

[17]  Hui Huang,et al.  All Metal Nitrides Solid‐State Asymmetric Supercapacitors , 2015, Advanced materials.

[18]  H. Yang,et al.  Three-dimensional Co3O4@C@Ni3S2 sandwich-structured nanoneedle arrays: towards high-performance flexible all-solid-state asymmetric supercapacitors , 2015 .

[19]  Liwei Lin,et al.  Highly active ruthenium oxide coating via ALD and electrochemical activation in supercapacitor applications , 2015 .

[20]  R. Holze,et al.  Aqueous Rechargeable Battery Based on Zinc and a Composite of LiNi1/3Co1/3Mn1/3O2 , 2015 .

[21]  Wenhua Zuo,et al.  Fabrication and Shell Optimization of Synergistic TiO2‐MoO3 Core–Shell Nanowire Array Anode for High Energy and Power Density Lithium‐Ion Batteries , 2015 .

[22]  Qingqing Ke,et al.  3D hierarchical SnO2@Ni(OH)2 core–shell nanowire arrays on carbon cloth for energy storage application , 2015 .

[23]  H. Alshareef,et al.  Highly Stable Supercapacitors with Conducting Polymer Core‐Shell Electrodes for Energy Storage Applications , 2015 .

[24]  Zhan-hong Yang,et al.  Zn–Al layered double oxides as high-performance anode materials for zinc-based secondary battery , 2015 .

[25]  Qing Zhang,et al.  Atomic layer deposition of Co3O4 on carbon nanotubes/carbon cloth for high-capacitance and ultrastable supercapacitor electrode , 2015, Nanotechnology.

[26]  Huiling Yang,et al.  Flexible Asymmetric Micro‐Supercapacitors Based on Bi2O3 and MnO2 Nanoflowers: Larger Areal Mass Promises Higher Energy Density , 2015 .

[27]  H. Fan,et al.  A high energy and power Li-ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode. , 2015, Small.

[28]  Zhiyi Lu,et al.  Hierarchical nanoarray materials for advanced nickel–zinc batteries , 2015 .

[29]  Zhan-hong Yang,et al.  Electrochemical properties of ZnO added with Zn-Al-hydrotalcites as anode materials for Zinc/Nickel alkaline secondary batteries , 2015 .

[30]  Jinqing Wang,et al.  Assembly and electrochemical properties of novel alkaline rechargeable Ni/Bi battery using Ni(OH)2 and (BiO)4CO3(OH)2 microspheres as electrode materials , 2015 .

[31]  Z. Bakenov,et al.  High Performance Zn/LiFePO4 Aqueous Rechargeable Battery for Large Scale Applications , 2015 .

[32]  M. Zacharias,et al.  Atomic-layer-deposition alumina induced carbon on porous NixCo1 − xO nanonets for enhanced pseudocapacitive and Li-ion storage performance , 2015, Nanotechnology.

[33]  Jing Xu,et al.  Flexible electronics based on inorganic nanowires. , 2015, Chemical Society reviews.

[34]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[35]  G. Gary Wang,et al.  Flexible solid-state supercapacitors: design, fabrication and applications , 2014 .

[36]  Dezhi Kong,et al.  Three‐Dimensional Co3O4@MnO2 Hierarchical Nanoneedle Arrays: Morphology Control and Electrochemical Energy Storage , 2014 .

[37]  B. Ellis,et al.  Three‐Dimensional Self‐Supported Metal Oxides for Advanced Energy Storage , 2014, Advanced materials.

[38]  H. Dai,et al.  Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide , 2014 .

[39]  Dingshan Yu,et al.  Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage , 2014, Nature Nanotechnology.

[40]  Shuang Yuan,et al.  Engraving Copper Foil to Give Large‐Scale Binder‐Free Porous CuO Arrays for a High‐Performance Sodium‐Ion Battery Anode , 2014, Advanced materials.

[41]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[42]  Q. Wang,et al.  Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities , 2014 .

[43]  Joseph F. Parker,et al.  Wiring zinc in three dimensions re-writes battery performance—dendrite-free cycling , 2014 .

[44]  Yong Ding,et al.  Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. , 2014, Nano letters.

[45]  Jae-Hun Kim,et al.  Metallic anodes for next generation secondary batteries. , 2013, Chemical Society reviews.

[46]  Yang Li,et al.  Nanoporous Ni(OH)2 thin film on 3D Ultrathin-graphite foam for asymmetric supercapacitor. , 2013, ACS nano.

[47]  Yuanyuan Li,et al.  Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. , 2013, Nano letters.

[48]  Min-Kyu Song,et al.  Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. , 2013, Nanoscale.

[49]  Enhanced band-edge photoluminescence from ZnO-passivated ZnO nanoflowers by atomic layer deposition , 2013, Nanoscale Research Letters.

[50]  Yong Ding,et al.  Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. , 2013, ACS nano.

[51]  Teng Zhai,et al.  H‐TiO2@MnO2//H‐TiO2@C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors , 2013, Advanced materials.

[52]  D. Su,et al.  Vertically oriented polypyrrole nanowire arrays on Pd-plated Nafion® membrane and its application in direct methanol fuel cells , 2013 .

[53]  Yunhui Huang,et al.  Nitrogen‐Doped Porous Carbon Nanofiber Webs as Anodes for Lithium Ion Batteries with a Superhigh Capacity and Rate Capability , 2012, Advanced materials.

[54]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[55]  Teng Zhai,et al.  Hydrogenated TiO2 nanotube arrays for supercapacitors. , 2012, Nano letters.

[56]  Cheol-Woo W. Yi,et al.  Characteristics and Electrochemical Performance of the TiO2-Coated ZnO Anode for Ni−Zn Secondary Batteries , 2011 .

[57]  G. Pan,et al.  Aqueous TiO2/Ni(OH)2 rechargeable battery with a high voltage based on proton and lithium insertion/extraction reactions , 2010 .

[58]  J. Yang,et al.  Preparation and electrochemical performances of ZnO nanowires as anode materials for Ni/Zn secondary battery , 2010 .

[59]  H. Dai,et al.  Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. , 2010, Journal of the American Chemical Society.

[60]  Zhixiang Wei,et al.  Conducting polymer nanowire arrays with enhanced electrochemical performance , 2010 .

[61]  J. Tu,et al.  Electrochemical performance of ZnO nanoplates as anode materials for Ni/Zn secondary batteries , 2008 .

[62]  Xiaogang Zhang,et al.  Electrochemical capacitance of NiO/Ru0.35V0.65O2 asymmetric electrochemical capacitor , 2007 .

[63]  Gaojun Wang,et al.  An aqueous rechargeable lithium battery with good cycling performance. , 2007, Angewandte Chemie.

[64]  Haoshen Zhou,et al.  Nanomaterials for lithium ion batteries , 2006 .

[65]  T. P. Kumar,et al.  Safety mechanisms in lithium-ion batteries , 2006 .

[66]  D. Shi,et al.  Size and morphology effects of ZnO anode nanomaterials for Zn/Ni secondary batteries , 2005 .

[67]  W. Brückner,et al.  XPS depth profile analysis of non‐stoichiometric NiO films , 2004 .

[68]  D. Northwood,et al.  Development of advanced rechargeable Ni/MH and Ni/Zn batteries , 2003 .

[69]  Raihan Othman,et al.  Ionic conductivity studies of poly(vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel–zinc cells , 2003 .

[70]  R. Spotnitz,et al.  Abuse behavior of high-power, lithium-ion cells , 2003 .

[71]  A. Shukla,et al.  Nickel-based rechargeable batteries , 2001 .

[72]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[73]  J. Jindra Sealed Ni–Zn cells, 1996–1998 , 2000 .

[74]  F. Beck,et al.  Rechargeable batteries with aqueous electrolytes , 2000 .

[75]  Development of NiZn cells , 1991 .