Algebraic Neighbourhood Logic

Abstract We present an algebraic embedding of Neighbourhood Logic ( NL ) into the framework of semirings which yields various simplifications. For example, some of the NL axioms can be dropped, since they are theorems in our framework, and Galois connections produce properties for free. A further simplification is achieved, since the semiring methods used are easy and fairly standard. Moreover, this embedding allows us to reuse knowledge from Neighbourhood Logic in other areas of Computer Science. Since in its original axiomatisation the logic cannot handle intervals of infinite length and therefore not fully model and specify reactive and hybrid systems, using lazy semirings we introduce an extension of NL to intervals of finite and infinite length. Furthermore, we discuss connections between the (extended) logic and other application areas, like Allen’s thirteen relations between intervals, the branching time temporal logic CTL ∗ and hybrid systems.

[1]  Chaochen Zhou,et al.  A Duration Calculus with Infinite Intervals , 1995, FCT.

[2]  Georg Struth,et al.  Automated Reasoning in Kleene Algebra , 2007, CADE.

[3]  Ben C. Moszkowski,et al.  A complete axiomatization of interval temporal logic with infinite time , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[4]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[5]  Yoav Shoham,et al.  A propositional modal logic of time intervals , 1991, JACM.

[6]  Jens Ulrik Skakkebæk Liveness and Fairness in Duration Calculus , 1994 .

[7]  Michel Sintzoff,et al.  Iterative Synthesis of Control Guards Ensuring Invariance and Inevitability in Discrete-Decision Games , 2004, Essays in Memory of Ole-Johan Dahl.

[8]  Georg Struth,et al.  Kleene algebra with domain , 2003, TOCL.

[9]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[10]  Mark Reynolds,et al.  An axiomatization of PCTL* , 2005, Inf. Comput..

[11]  Zohar Manna,et al.  A Hardware Semantics Based on Temporal Intervals , 1983, ICALP.

[12]  Roland Carl Backhouse,et al.  Galois Connections and Fixed Point Calculus , 2000, Algebraic and Coalgebraic Methods in the Mathematics of Program Construction.

[13]  Bernhard Möller,et al.  Kleene getting lazy , 2007, Sci. Comput. Program..

[14]  Ernie Cohen,et al.  Separation and Reduction , 2000, MPC.

[15]  Jules Desharnais,et al.  Modal Kleene algebra and applications - a survey , 2004 .

[16]  Jerzy Tiuryn,et al.  Dynamic logic , 2001, SIGA.

[17]  Robin Milner An Action Structure for Synchronous pi-Calculus , 1993, FCT.

[18]  U. Hebisch,et al.  Semirings: Algebraic Theory and Applications in Computer Science , 1998 .

[19]  Hanpin Wang,et al.  Completeness of temporal logics over infinite intervals , 2004, Discret. Appl. Math..

[20]  Alexander Moshe Rabinovich,et al.  Expressive Completeness of Duration Calculus , 2000, Inf. Comput..

[21]  D. Kozen On Hoare Logic, Kleene Algebra, and Types , 1999 .

[22]  Suman Roy,et al.  Notes on Neighbourhood Logic , 1997 .

[23]  Peter Höfner Semiring Neighbours: An Algebraic Embedding and Extension of Neighbourhood Logic , 2007, Electron. Notes Theor. Comput. Sci..

[24]  Patrick J. Hayes,et al.  A Common-Sense Theory of Time , 1985, IJCAI.

[25]  Michael R. Hansen,et al.  An Adequate First Order Interval Logic , 1997, COMPOS.

[26]  Bernhard Möller,et al.  Towards an Algebra of Hybrid Systems , 2005, RelMiCS.

[27]  Valentin Goranko,et al.  A Road Map of Interval Temporal Logics and Duration Calculi , 2004, J. Appl. Non Class. Logics.

[28]  Valentin Goranko,et al.  A general tableau method for propositional interval temporal logics: Theory and implementation , 2006, J. Appl. Log..

[29]  Michael R. Hansen,et al.  Duration Calculus: A Formal Approach to Real-Time Systems (Monographs in Theoretical Computer Science. an Eatcs Seris) , 2004 .

[30]  Yde Venema,et al.  Expressiveness and Completeness of an Interval Tense Logic , 1990, Notre Dame J. Formal Log..

[31]  Mark Reynolds,et al.  An axiomatization of full Computation Tree Logic , 2001, Journal of Symbolic Logic.

[32]  Anders P. Ravn,et al.  An Extended Duration Calculus for Hybrid Real-Time Systems , 1992, Hybrid Systems.

[33]  Dexter Kozen,et al.  Kleene algebra with tests , 1997, TOPL.

[34]  Davide Bresolin,et al.  On Decidability and Expressiveness of Propositional Interval Neighborhood Logics , 2007, LFCS.

[35]  S. Ananiadou,et al.  Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science): Introduction , 2005 .

[36]  Yde Venema,et al.  A Modal Logic for Chopping Intervals , 1991, J. Log. Comput..

[37]  Jens Ulrik Skakkebæk Liveness and Fairness in Duration Calculus , 1994, CONCUR.

[38]  Peter Höfner From Sequential Algebra to Kleene Algebra: Interval Modalities and Duration Calculus , 2005 .

[39]  Chaochen Zhou,et al.  Completeness of Neighbourhood Logic , 1999, STACS.

[40]  Georg Struth,et al.  Quantales and Temporal Logics , 2006, AMAST.

[41]  Bruno Dutertre,et al.  Complete proof systems for first order interval temporal logic , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[42]  C. A. R. Hoare,et al.  A Calculus of Durations , 1991, Inf. Process. Lett..

[43]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[44]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[45]  Bernhard Möller,et al.  Lazy Semiring Neighbours and Some Applications , 2006, RelMiCS.

[46]  Arto Salomaa,et al.  Semirings, Automata, Languages , 1985, EATCS Monographs on Theoretical Computer Science.

[47]  Jonathan S. Golan,et al.  The theory of semirings with applications in mathematics and theoretical computer science , 1992, Pitman monographs and surveys in pure and applied mathematics.