Reduced-order model based dynamic tracking for soft manipulators: Data-driven LPV modeling, control design and experimental results

[1]  Anh‐Tu Nguyen,et al.  Equivalent-Input-Disturbance-Based Dynamic Tracking Control for Soft Robots via Reduced-Order Finite-Element Models , 2022, IEEE/ASME Transactions on Mechatronics.

[2]  G. Chirikjian,et al.  A concise guide to modelling the physics of embodied intelligence in soft robotics , 2022, Nature Reviews Physics.

[3]  C. Yuan,et al.  Nonlinear Dynamics Modeling and Fault Detection for a Soft Trunk Robot: An Adaptive NN-Based Approach , 2022, IEEE Robotics and Automation Letters.

[4]  Yan Wang,et al.  Polytopic LPV approaches for intelligent automotive systems: State of the art and future challenges , 2021 .

[5]  Carmel Majidi,et al.  Robust Control of a Multi-Axis Shape Memory Alloy-Driven Soft Manipulator , 2021, IEEE Robotics and Automation Letters.

[6]  C. Duriez,et al.  Model-Based Control of Soft Robots: A Survey of the State of the Art and Open Challenges , 2021, IEEE Control Systems.

[7]  Vicenç Puig,et al.  Disturbance observer-based LPV feedback control of a N-DoF robotic manipulator including compliance through gain shifting , 2021 .

[8]  A. Ji,et al.  A Snake-Inspired Layer-Driven Continuum Robot. , 2021, Soft robotics.

[9]  R. Brent Gillespie,et al.  Data-Driven Control of Soft Robots Using Koopman Operator Theory , 2021, IEEE Transactions on Robotics.

[10]  Christian Duriez,et al.  Real-Time Simulation for Control of Soft Robots With Self-Collisions Using Model Order Reduction for Contact Forces , 2021, IEEE Robotics and Automation Letters.

[11]  Lennart Ljung,et al.  On Local LTI Model Coherence for LPV Interpolation , 2020, IEEE Transactions on Automatic Control.

[12]  Christian Duriez,et al.  A Model-Based Sensor Fusion Approach for Force and Shape Estimation in Soft Robotics , 2020, IEEE Robotics and Automation Letters.

[13]  Wenyu Liang,et al.  Control of a Soft Inchworm Robot With Environment Adaptation , 2020, IEEE Transactions on Industrial Electronics.

[14]  James M. Bern,et al.  Soft Robot Control With a Learned Differentiable Model , 2020, 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft).

[15]  Christian Duriez,et al.  Design, implementation, and control of a deformable manipulator robot based on a compliant spine , 2020, Int. J. Robotics Res..

[16]  Jinsong Leng,et al.  Novel Bending and Helical Extensile/Contractile Pneumatic Artificial Muscles Inspired by Elephant Trunk. , 2020, Soft robotics.

[17]  Tianmiao Wang,et al.  Octopus Arm-Inspired Tapered Soft Actuators with Suckers for Improved Grasping. , 2020, Soft robotics.

[18]  Vetranovicevu »PELEGRINU,et al.  Element , 2020, Definitions.

[19]  Yiyang Chen,et al.  Generalized iterative learning control with mixed system constraints: A gantry robot based verification , 2020, Control Engineering Practice.

[20]  Daniela Rus,et al.  Model-based dynamic feedback control of a planar soft robot: trajectory tracking and interaction with the environment , 2020, Int. J. Robotics Res..

[21]  Christian Duriez,et al.  Trajectory Tracking Control Design for Large-Scale Linear Dynamical Systems With Applications to Soft Robotics , 2019, IEEE Transactions on Control Systems Technology.

[22]  Y. Or,et al.  Understanding Inchworm Crawling for Soft-Robotics , 2019, IEEE Robotics and Automation Letters.

[23]  Yoshihiro Kawahara,et al.  Exploring Behaviors of Caterpillar-Like Soft Robots with a Central Pattern Generator-Based Controller and Reinforcement Learning , 2019, Soft robotics.

[24]  Hao Su,et al.  Spine-Inspired Continuum Soft Exoskeleton for Stoop Lifting Assistance , 2019, IEEE Robotics and Automation Letters.

[25]  Kit-Hang Lee,et al.  Vision-Based Online Learning Kinematic Control for Soft Robots Using Local Gaussian Process Regression , 2019, IEEE Robotics and Automation Letters.

[26]  Girish Chowdhary,et al.  Open Loop Position Control of Soft Continuum Arm Using Deep Reinforcement Learning , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[27]  Samer Mohammed,et al.  Robust Active Disturbance Rejection Control via Control Lyapunov Functions: Application to Actuated-Ankle–Foot-Orthosis , 2018, Control Engineering Practice.

[28]  D. Floreano,et al.  Soft Biomimetic Fish Robot Made of Dielectric Elastomer Actuators , 2018, Soft robotics.

[29]  Lennart Blanken,et al.  Multivariable Iterative Learning Control Design Procedures: From Decentralized to Centralized, Illustrated on an Industrial Printer , 2018, IEEE Transactions on Control Systems Technology.

[30]  Philippe Chevrel,et al.  Gain-scheduled static output feedback control for saturated LPV systems with bounded parameter variations , 2018, Autom..

[31]  Cecilia Laschi,et al.  Control Strategies for Soft Robotic Manipulators: A Survey. , 2018, Soft robotics.

[32]  Jérémie Dequidt,et al.  Software toolkit for modeling, simulation, and control of soft robots , 2017, Adv. Robotics.

[33]  A. Cohen,et al.  Model Reduction and Approximation: Theory and Algorithms , 2017 .

[34]  Daniel M. Vogt,et al.  Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model. , 2017, Soft robotics.

[35]  Christian Duriez,et al.  Optimization-Based Inverse Model of Soft Robots With Contact Handling , 2017, IEEE Robotics and Automation Letters.

[36]  Lakmal Seneviratne,et al.  Discrete Cosserat Approach for Multisection Soft Manipulator Dynamics , 2017, IEEE Transactions on Robotics.

[37]  Chao Wang,et al.  Three-Dimensional Dynamics for Cable-Driven Soft Manipulator , 2017, IEEE/ASME Transactions on Mechatronics.

[38]  Xinwu Liang,et al.  Visual Servoing of Soft Robot Manipulator in Constrained Environments With an Adaptive Controller , 2017, IEEE/ASME Transactions on Mechatronics.

[39]  Matteo Cianchetti,et al.  Soft robotics: Technologies and systems pushing the boundaries of robot abilities , 2016, Science Robotics.

[40]  Angela P. Schoellig,et al.  Deep neural networks for improved, impromptu trajectory tracking of quadrotors , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[41]  Se-Kyu Oh,et al.  Iterative learning model predictive control for constrained multivariable control of batch processes , 2016, Comput. Chem. Eng..

[42]  Robert J. Wood,et al.  An integrated design and fabrication strategy for entirely soft, autonomous robots , 2016, Nature.

[43]  Daniela Rus,et al.  Design, kinematics, and control of a soft spatial fluidic elastomer manipulator , 2016, Int. J. Robotics Res..

[44]  T Umedachi,et al.  Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots , 2016, Bioinspiration & biomimetics.

[45]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[46]  Jian Huang,et al.  Nonlinear Disturbance Observer-Based Dynamic Surface Control of Mobile Wheeled Inverted Pendulum , 2015, IEEE Transactions on Control Systems Technology.

[47]  Daniela Rus,et al.  A Recipe for Soft Fluidic Elastomer Robots , 2015, Soft robotics.

[48]  Jochen J. Steil,et al.  Efficient Exploratory Learning of Inverse Kinematics on a Bionic Elephant Trunk , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[49]  Jan Swevers,et al.  Interpolated Modeling of LPV Systems , 2014, IEEE Transactions on Control Systems Technology.

[50]  Christian Duriez,et al.  Control of elastic soft robots based on real-time finite element method , 2013, 2013 IEEE International Conference on Robotics and Automation.

[51]  Mahdi Tavakoli,et al.  Nonlinear Disturbance Observer Design For Robotic Manipulators , 2013 .

[52]  Paolo Dario,et al.  Soft Robot Arm Inspired by the Octopus , 2012, Adv. Robotics.

[53]  D. Caleb Rucker,et al.  Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading , 2011, IEEE Transactions on Robotics.

[54]  Nabil Simaan,et al.  Configuration and joint feedback for enhanced performance of multi-segment continuum robots , 2011, 2011 IEEE International Conference on Robotics and Automation.

[55]  Yaodong Pan,et al.  Equivalent-Input-Disturbance Approach—Analysis and Application to Disturbance Rejection in Dual-Stage Feed Drive Control System , 2011, IEEE/ASME Transactions on Mechatronics.

[56]  Robert J. Webster,et al.  Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review , 2010, Int. J. Robotics Res..

[57]  Christopher D. Rahn,et al.  Geometrically Exact Models for Soft Robotic Manipulators , 2008, IEEE Transactions on Robotics.

[58]  R. Tucker,et al.  Nonlinear dynamics of elastic rods using the Cosserat theory: Modelling and simulation , 2008 .

[59]  Eric Rogers,et al.  Norm-Optimal Iterative Learning Control Applied to Gantry Robots for Automation Applications , 2006, IEEE Transactions on Robotics.

[60]  Ian D. Walker,et al.  Kinematics for multisection continuum robots , 2006, IEEE Transactions on Robotics.

[61]  Stephen P. Boyd,et al.  Piecewise-affine state feedback for piecewise-affine slab systems using convex optimization , 2005, Syst. Control. Lett..

[62]  Thierry-Marie Guerra,et al.  LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form , 2004, Autom..

[63]  Horst Schulte,et al.  Fuzzy state feedback gain scheduling control of servo-pneumatic actuators , 2004 .

[64]  Friedhelm Schwenker,et al.  Three learning phases for radial-basis-function networks , 2001, Neural Networks.

[65]  Akira Ichikawa,et al.  Output stabilization of Takagi-Sugeno fuzzy systems , 2000, Fuzzy Sets Syst..

[66]  Karl-Erik Årzén,et al.  Piecewise quadratic stability of fuzzy systems , 1999, IEEE Trans. Fuzzy Syst..

[67]  Kazuo Tanaka,et al.  Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs , 1998, IEEE Trans. Fuzzy Syst..

[68]  Michael J. Grimble,et al.  Iterative Learning Control for Deterministic Systems , 1992 .

[69]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[70]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[71]  C. Laschi,et al.  Closed-loop Dynamic Control of a Soft Manipulator using Deep Reinforcement Learning , 2022, IEEE Robotics and Automation Letters.

[72]  C. Duriez,et al.  LPV framework for Non-Linear Dynamic Control of Soft Robots using Finite Element Model , 2020, IFAC-PapersOnLine.

[73]  Christian Duriez,et al.  Control Design for Soft Robots Based on Reduced-Order Model , 2019, IEEE Robotics and Automation Letters.

[74]  Lei Guo,et al.  Disturbance-Observer-Based Control and Related Methods—An Overview , 2016, IEEE Transactions on Industrial Electronics.

[75]  Krzysztof Galkowski,et al.  Repetitive process based design and experimental verification of a dynamic iterative learning control law , 2016 .

[76]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[77]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[78]  Stefan Schaal,et al.  Locally Weighted Projection Regression : An O(n) Algorithm for Incremental Real Time Learning in High Dimensional Space , 2000 .

[79]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[80]  Brian D. Storey Numerical Methods for Ordinary Differential Equations , 1989 .