Mineral-Bound Trace Metals as Cofactors for Anaerobic Biological Nitrogen Fixation.

Nitrogenase is the only known biological enzyme capable of reducing N2 to bioavailable NH3. Most nitrogenases use Mo as a metallocofactor, while alternative cofactors V and Fe are also viable. Both geological and bioinformatic evidence suggest an ancient origin of Mo-based nitrogenase in the Archean, despite the low concentration of dissolved Mo in the Archean oceans. This apparent paradox would be resolvable if mineral-bound Mo were bioavailable for nitrogen fixation by ancient diazotrophs. In this study, the bioavailability of mineral-bound Mo, V, and Fe was determined by incubating an obligately anaerobic diazotroph Clostridium kluyveri with Mo-, V-, and Fe-bearing minerals (molybdenite, cavansite, and ferrihydrite, respectively) and basalt under diazotrophic conditions. The results showed that C. kluyveri utilized mineral-associated metals to express nitrogenase genes and fix nitrogen, as measured by the reverse transcription quantitative polymerase chain reaction and acetylene reduction assay, respectively. C. kluyveri secreted chelating molecules to extract metals from the minerals. As a result of microbial weathering, mineral surface chemistry significantly changed, likely due to surface coating by microbial exudates for metal extraction. These results provide important support for the ancient origin of Mo-based nitrogenase, with profound implications for coevolution of the biosphere and geosphere.

[1]  Stephanie J. Spielman,et al.  The influence of oxygen and electronegativity on iron mineral chemistry throughout Earth’s history , 2023, Precambrian Research.

[2]  Hailiang Dong,et al.  Bioavailability of mineral‐associated trace metals as cofactors for nitrogen fixation by Azotobacter vinelandii , 2023, Geobiology.

[3]  Hailiang Dong,et al.  Microbial reduction of Fe(III) in nontronite: Role of biochar as a redox mediator , 2023, Geochimica et Cosmochimica Acta.

[4]  S. Bonneville,et al.  The contribution of living organisms to rock weathering in the critical zone , 2022, npj Materials Degradation.

[5]  Hailiang Dong,et al.  A critical review of mineral–microbe interaction and co-evolution: mechanisms and applications , 2022, National science review.

[6]  C. Löscher,et al.  High Diazotrophic Diversity but Low N2 Fixation Activity in the Northern Benguela Upwelling System Confirming the Enigma of Nitrogen Fixation in Oxygen Minimum Zone Waters , 2022, Frontiers in Marine Science.

[7]  T. J. Browning,et al.  Nutrient regulation of biological nitrogen fixation across the tropical western North Pacific , 2022, Science advances.

[8]  R. Bradley,et al.  In Vivo Temperature Dependency of Molybdenum and Vanadium Nitrogenase Activity in the Heterocystous Cyanobacteria Anabaena variabilis. , 2022, Environmental science & technology.

[9]  Jie Xu,et al.  A critical review of molybdenum sequestration mechanisms under euxinic conditions: Implications for the precision of molybdenum paleoredox proxies , 2021, Earth-Science Reviews.

[10]  Aleisha C. Johnson,et al.  Reconciling evidence of oxidative weathering and atmospheric anoxia on Archean Earth , 2021, Science advances.

[11]  S. Ni,et al.  Lignin-enhanced reduction of structural Fe(III) in nontronite: Dual roles of lignin as electron shuttle and donor , 2021 .

[12]  C. Dupont,et al.  Petrobactin, a siderophore produced by Alteromonas, mediates community iron acquisition in the global ocean , 2021, The ISME Journal.

[13]  Qin Li,et al.  Functional analysis of multiple nifB genes of Paenibacillus strains in synthesis of Mo-, Fe- and V-nitrogenases , 2021, Microbial Cell Factories.

[14]  E. Boyd,et al.  Reductive dissolution of pyrite by methanogenic archaea , 2021, The ISME Journal.

[15]  R. Anderson,et al.  Radiation of nitrogen‐metabolizing enzymes across the tree of life tracks environmental transitions in Earth history , 2020, Geobiology.

[16]  Vineeta Rai,et al.  Extraction and Detection of Structurally Diverse Siderophores in Soil , 2020, Frontiers in Microbiology.

[17]  C. Harwood Iron-Only and Vanadium Nitrogenases: Fail-Safe Enzymes or Something More? , 2020, Annual review of microbiology.

[18]  D. Tischler,et al.  Metal binding ability of microbial natural metal chelators and potential applications. , 2020, Natural product reports.

[19]  J. Bellenger,et al.  Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review , 2020, Biogeochemistry.

[20]  J. Waldbauer,et al.  Carbon substrate re‐orders relative growth of a bacterium using Mo‐, V‐, or Fe‐nitrogenase for nitrogen fixation , 2020, Environmental microbiology.

[21]  Bryan D. Kolaczkowski,et al.  Reconstructing the evolutionary history of nitrogenases: Evidence for ancestral molybdenum‐cofactor utilization , 2020, Geobiology.

[22]  Stephanie J. Spielman,et al.  The evolving redox chemistry and bioavailability of vanadium in deep time , 2020, Geobiology.

[23]  K. Zahnle,et al.  The Archean atmosphere , 2020, Science Advances.

[24]  C. Schleper,et al.  Copper limiting threshold in the terrestrial ammonia oxidizing archaeon Nitrososphaera viennensis. , 2020, Research in microbiology.

[25]  Tanushree B. Gupta,et al.  Antimicrobial production by strictly anaerobic Clostridium species. , 2020, International journal of antimicrobial agents.

[26]  F. Lutzoni,et al.  Molybdenum threshold for ecosystem scale alternative vanadium nitrogenase activity in boreal forests , 2019, Proceedings of the National Academy of Sciences.

[27]  D. Canfield,et al.  Mesophilic microorganisms build terrestrial mats analogous to Precambrian microbial jungles , 2019, Nature Communications.

[28]  R. Hazen,et al.  Redox states of Archean surficial environments: The importance of H2,g instead of O2,g for weathering reactions , 2019, Chemical Geology.

[29]  J. Bandow,et al.  NifA is the master regulator of both nitrogenase systems in Rhodobacter capsulatus , 2019, MicrobiologyOpen.

[30]  J. W. Peters,et al.  Geobiological feedbacks, oxygen, and the evolution of nitrogenase. , 2019, Free radical biology & medicine.

[31]  Aleisha C. Johnson,et al.  Experimental determination of pyrite and molybdenite oxidation kinetics at nanomolar oxygen concentrations , 2019, Geochimica et Cosmochimica Acta.

[32]  A. Martiny,et al.  Convergent estimates of marine nitrogen fixation , 2019, Nature.

[33]  F. Muller Exploring the Potential Role of Terrestrially Derived Humic Substances in the Marine Biogeochemistry of Iron , 2018, Front. Earth Sci..

[34]  A. Hofmann,et al.  Evolution of atmospheric xenon and other noble gases inferred from Archean to Paleoproterozoic rocks , 2018, Geochimica et Cosmochimica Acta.

[35]  Hailiang Dong,et al.  Abundance and taxonomic affiliation of molybdenum transport and utilization genes in Tengchong hot springs, China , 2018, Environmental microbiology.

[36]  C. Goldblatt,et al.  EarthN: A New Earth System Nitrogen Model , 2018, Geochemistry, Geophysics, Geosystems.

[37]  F. Morel,et al.  The purple non‐sulfur bacterium Rhodopseudomonas palustris produces novel petrobactin‐related siderophores under aerobic and anaerobic conditions , 2018, Environmental microbiology.

[38]  R. Amin,et al.  Interfacial Kinetics and Ionic Diffusivity of the Electrodeposited MoS2 Film. , 2018, ACS applied materials & interfaces.

[39]  P. Smedley,et al.  Molybdenum in natural waters: A review of occurrence, distributions and controls , 2017 .

[40]  F. Morel,et al.  Siderophore production in Azotobacter vinelandii in response to Fe‐, Mo‐ and V‐limitation , 2017, Environmental microbiology.

[41]  P. Falkowski,et al.  Metal availability and the expanding network of microbial metabolisms in the Archaean eon , 2017 .

[42]  F. Morel,et al.  Diversity and Activity of Alternative Nitrogenases in Sequenced Genomes and Coastal Environments , 2017, Front. Microbiol..

[43]  A. Zerkle,et al.  The geobiological nitrogen cycle: From microbes to the mantle , 2017, Geobiology.

[44]  A. Anbar,et al.  The Stable Isotope Geochemistry of Molybdenum , 2017 .

[45]  F. Lutzoni,et al.  Biological nitrogen fixation by alternative nitrogenases in boreal cyanolichens: importance of molybdenum availability and implications for current biological nitrogen fixation estimates. , 2017, The New phytologist.

[46]  P. Falkowski,et al.  The Role of Microbial Electron Transfer in the Coevolution of the Biosphere and Geosphere. , 2016, Annual review of microbiology.

[47]  G. Haug,et al.  Reference Values Following ISO Guidelines for Frequently Requested Rock Reference Materials , 2016 .

[48]  R. Buick,et al.  The evolution of Earth's biogeochemical nitrogen cycle , 2016 .

[49]  R. Hurt,et al.  Chemical Dissolution Pathways of MoS2 Nanosheets in Biological and Environmental Media. , 2016, Environmental science & technology.

[50]  J. Harnmeijer,et al.  Earth's air pressure 2.7 billion years ago constrained to less than half of modern levels , 2016 .

[51]  Thomas Wichard,et al.  Effect of organic matter on nitrogenase metal cofactors homeostasis in Azotobacter vinelandii under diazotrophic conditions. , 2016, Environmental microbiology reports.

[52]  F. Morel,et al.  Alternative nitrogenase activity in the environment and nitrogen cycle implications , 2016, Biogeochemistry.

[53]  Jen‐How Huang,et al.  Vanadium: Global (bio)geochemistry , 2015 .

[54]  F. Morel,et al.  The Siderophore Metabolome of Azotobacter vinelandii , 2015, Applied and Environmental Microbiology.

[55]  S. Kopf,et al.  Oxidative mobilization of cerium and uranium and enhanced release of “immobile” high field strength elements from igneous rocks in the presence of the biogenic siderophore desferrioxamine B , 2015 .

[56]  S. Holmström,et al.  Microbe–mineral interactions: The impact of surface attachment on mineral weathering and element selectivity by microorganisms , 2015 .

[57]  Eva E. Stüeken,et al.  Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr , 2015, Nature.

[58]  J. Harrington,et al.  Metallophores and Trace Metal Biogeochemistry , 2015, Aquatic Geochemistry.

[59]  Christopher T. Reinhard,et al.  Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event , 2014 .

[60]  F. Morel,et al.  Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia , 2014, Proceedings of the National Academy of Sciences.

[61]  N. Planavsky,et al.  The rise of oxygen in Earth’s early ocean and atmosphere , 2014, Nature.

[62]  F. Morel,et al.  Possible contribution of alternative nitrogenases to nitrogen fixation by asymbiotic N2-fixing bacteria in soils , 2014 .

[63]  J. Bellenger,et al.  Molybdenum and phosphorus limitation of asymbiotic nitrogen fixation in forests of Eastern Canada: Influence of vegetative cover and seasonal variability , 2013 .

[64]  B. Marty,et al.  Nitrogen Isotopic Composition and Density of the Archean Atmosphere , 2013, Science.

[65]  J. W. Peters,et al.  New insights into the evolutionary history of biological nitrogen fixation , 2013, Front. Microbiol..

[66]  R. Saha,et al.  Microbial siderophores: a mini review , 2013, Journal of basic microbiology.

[67]  Deli Wang Redox chemistry of molybdenum in natural waters and its involvement in biological evolution , 2012, Front. Microbio..

[68]  S. Brantley,et al.  A First Analysis of Metallome Biosignatures of Hyperthermophilic Archaea , 2012, Archaea.

[69]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[70]  I. Schalk,et al.  New roles for bacterial siderophores in metal transport and tolerance. , 2011, Environmental microbiology.

[71]  John W. Peters,et al.  An Alternative Path for the Evolution of Biological Nitrogen Fixation , 2011, Front. Microbio..

[72]  Thomas Wichard,et al.  Essential metals for nitrogen fixation in a free-living N₂-fixing bacterium: chelation, homeostasis and high use efficiency. , 2011, Environmental microbiology.

[73]  Scott R. Miller,et al.  A late methanogen origin for molybdenum‐dependent nitrogenase , 2011, Geobiology.

[74]  Paul G Falkowski,et al.  The Evolution and Future of Earth’s Nitrogen Cycle , 2010, Science.

[75]  J. W. Peters,et al.  Substrate specificity and evolutionary implications of a NifDK enzyme carrying NifB‐co at its active site , 2010, FEBS letters.

[76]  G. Gadd Metals, minerals and microbes: geomicrobiology and bioremediation. , 2010, Microbiology.

[77]  C. Fennessey,et al.  Siderophores Are Not Involved in Fe(III) Solubilization during Anaerobic Fe(III) Respiration by Shewanella oneidensis MR-1 , 2010, Applied and Environmental Microbiology.

[78]  F. Morel,et al.  Multiple roles of siderophores in free-living nitrogen-fixing bacteria , 2009, BioMetals.

[79]  Thomas Wichard,et al.  Storage and bioavailability of molybdenum in soils increased by organic matter complexation , 2009 .

[80]  Alexander R. Barron,et al.  Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils , 2009 .

[81]  A. Anbar Elements and Evolution , 2008, Science.

[82]  Thomas Wichard,et al.  Uptake of molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores , 2008 .

[83]  A. Anbar,et al.  Tracing the stepwise oxygenation of the Proterozoic ocean , 2008, Nature.

[84]  Fuli Li,et al.  The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features , 2008, Proceedings of the National Academy of Sciences.

[85]  J. Pearce Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust , 2008 .

[86]  W. Bleeker,et al.  Review Paper. Mineral evolution , 2008 .

[87]  J. Ferry,et al.  The effect of methanogen growth on mineral substrates: will Ni markers of methanogen‐based communities be detectable in the rock record? , 2007, Geobiology.

[88]  K. Barbeau Photochemistry of Organic Iron(III) Complexing Ligands in Oceanic Systems , 2006, Photochemistry and photobiology.

[89]  Jizhong Zhou,et al.  Functional Genomic Analysis of Three Nitrogenase Isozymes in the Photosynthetic Bacterium Rhodopseudomonas palustris , 2005, Journal of bacteriology.

[90]  A. Anbar,et al.  Production of a molybdophore during metal-targeted dissolution of silicates by soil bacteria , 2005 .

[91]  D. Kahn,et al.  Genetic regulation of biological nitrogen fixation , 2004, Nature Reviews Microbiology.

[92]  Jason Raymond,et al.  The natural history of nitrogen fixation. , 2004, Molecular biology and evolution.

[93]  Yilin Hu,et al.  Formation and insertion of the nitrogenase iron-molybdenum cofactor. , 2004, Chemical reviews.

[94]  S. Kraemer,et al.  Iron oxide dissolution and solubility in the presence of siderophores , 2004, Aquatic Sciences.

[95]  J. Kostka,et al.  Microscopic Evidence for Microbial Dissolution of Smectite , 2003 .

[96]  P. Maurice,et al.  Siderophore adsorption to and dissolution of kaolinite at pH 3 to 7 and 22°C , 2003 .

[97]  C. G. Wheat,et al.  Oceanic molybdenum isotope fractionation: Diagenesis and hydrothermal ridge‐flank alteration , 2002 .

[98]  A. Knoll,et al.  Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? , 2002, Science.

[99]  H. Ohmoto,et al.  Dissolution of iron hydroxides by marine bacterial siderophore , 2002 .

[100]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[101]  J. Kasting,et al.  Biogeochemistry: The nitrogen fix , 2001, Nature.

[102]  M. Schoonen,et al.  Nitrogen reduction under hydrothermal vent conditions: implications for the prebiotic synthesis of C-H-O-N compounds. , 2001, Astrobiology.

[103]  B. Erickson,et al.  Molybdenum(VI) speciation in sulfidic waters:. Stability and lability of thiomolybdates , 2000 .

[104]  P. Ludden,et al.  ApoNifH functions in iron-molybdenum cofactor synthesis and apodinitrogenase maturation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[105]  R. Premakumar,et al.  Mo-independent nitrogenase 3 is advantageous for diazotrophic growth of Azotobacter vinelandii on solid medium containing molybdenum , 1994, Journal of bacteriology.

[106]  M. Hochella,et al.  Structure and bonding environments at the calcite surface as observed with X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) , 1991 .

[107]  G. Hornberger,et al.  The influence of mineralogy and solution chemistry on the attachment of bacteria to representative aquifer materials , 1990 .

[108]  G. Goleš,et al.  Comments on petrogeneses and the tectonic setting of Columbia River basalts , 1985 .

[109]  W. Brill,et al.  Molybdenum accumulation and storage in Klebsiella pneumoniae and Azotobacter vinelandii , 1981, Journal of bacteriology.

[110]  M. McElroy,et al.  Fixation of Nitrogen in the Prebiotic Atmosphere , 1979, Science.

[111]  W. A. Dench,et al.  Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids , 1979 .

[112]  R. Burris,et al.  In situ studies on N2 fixation using the acetylene reduction technique. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[113]  W. Feitknecht,et al.  Löslichkeitsprodukte von Metalloxiden und -hydroxiden. 8. Mitteilung. Die Löslichkeit gealterter Eisen(III)-hydroxid-Fällungen , 1963 .

[114]  B. T. Bornstein,et al.  The Nutrition of Clostridium kluyveri , 1948, Journal of bacteriology.

[115]  B. T. Bornstein,et al.  The Synthesis of Butyric and Caproic Acids from Ethanol and Acetic Acid by Clostridium Kluyveri. , 1945, Proceedings of the National Academy of Sciences of the United States of America.

[116]  L. Arnow COLORIMETRIC DETERMINATION OF THE COMPONENTS OF 3,4-DIHYDROXYPHENYLALANINETYROSINE MIXTURES , 1937 .