Spatio-temporal compression of trajectories in road networks

With the proliferation of wireless communication devices integrating GPS technology, trajectory datasets are becoming more and more available. The problems concerning the transmission and the storage of such data have become prominent with the continuous increase in volume of these data. A few works in the field of moving object databases deal with spatio-temporal compression. However, these works only consider the case of objects moving freely in the space. In this paper, we tackle the problem of compressing trajectory data in road networks with deterministic error bounds. We analyze the limitations of the existing methods and data models for road network trajectory compression. Then, we propose an extended data model and a network partitioning algorithm into long paths to increase the compression rates for the same error bound. We integrate these proposals with the state-of-the-art Douglas-Peucker compression algorithm to obtain a new technique to compress road network trajectory data with deterministic error bounds. The extensive experimental results confirm the appropriateness of the proposed approach that exhibits compression rates close to the ideal ones with respect to the employed Douglas-Peucker compression algorithm.

[1]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[2]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[3]  M. Iri,et al.  Polygonal Approximations of a Curve — Formulations and Algorithms , 1988 .

[4]  John Hershberger,et al.  An O(nlogn) implementation of the Douglas-Peucker algorithm for line simplification , 1994, SCG '94.

[5]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[6]  Thomas Brinkhoff,et al.  A Framework for Generating Network-Based Moving Objects , 2002, GeoInformatica.

[7]  Ouri Wolfson,et al.  Spatio-temporal data reduction with deterministic error bounds , 2003, DIALM-POMC '03.

[8]  J. Ehrlich LAVIA , THE FRENCH ISA PROJECT : main issues and first results on technical tests , 2003 .

[9]  Nirvana Meratnia,et al.  Spatiotemporal Compression Techniques for Moving Point Objects , 2004, EDBT.

[10]  Ralf Hartmut Güting,et al.  Modeling and querying moving objects in networks , 2006, The VLDB Journal.

[11]  Ouri Wolfson,et al.  Nonmaterialized Motion Information in Transport Networks , 2005, ICDT.

[12]  Christian S. Jensen,et al.  Techniques for efficient road-network-based tracking of moving objects , 2005, IEEE Transactions on Knowledge and Data Engineering.

[13]  Ralf Hartmut Güting,et al.  Indexing the Trajectories of Moving Objects in Networks* , 2004, GeoInformatica.

[14]  Ouri Wolfson,et al.  On-line data reduction and the quality of history in moving objects databases , 2006, MobiDE '06.

[15]  Timos K. Sellis,et al.  Sampling Trajectory Streams with Spatiotemporal Criteria , 2006, 18th International Conference on Scientific and Statistical Database Management (SSDBM'06).

[16]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[17]  Sami Faïz,et al.  Clustering Algorithm for Network Constraint Trajectories , 2008, SDH.

[18]  Spyros G. Tzafestas,et al.  Reducing a class of polygonal path tracking to straight line tracking via nonlinear strip-wise affine transformation , 2008, Math. Comput. Simul..

[19]  Christian S. Jensen,et al.  Enabling Location-based Services—Multi-Graph Representation of Transportation Networks , 2008, GeoInformatica.

[20]  Jae-Gil Lee,et al.  TraClass: trajectory classification using hierarchical region-based and trajectory-based clustering , 2008, Proc. VLDB Endow..

[21]  Nikos Pelekis,et al.  Trajectory Compression under Network Constraints , 2009, SSTD.

[22]  Yannis Theodoridis,et al.  On the Effect of Location Uncertainty in Spatial Querying , 2009, IEEE Transactions on Knowledge and Data Engineering.

[23]  Joachim Gudmundsson,et al.  Compressing spatio-temporal trajectories , 2009, Comput. Geom..

[24]  Seung-won Hwang,et al.  NNCluster: An Efficient Clustering Algorithm for Road Network Trajectories , 2010, DASFAA.

[25]  Martin Mauve,et al.  A comparison of vehicular trajectory encoding techniques , 2011, 2011 The 10th IFIP Annual Mediterranean Ad Hoc Networking Workshop.

[26]  Thomas K. Peucker,et al.  2. Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or its Caricature , 2011 .

[27]  Dominique Barth,et al.  Indexing in-network trajectory flows , 2011, The VLDB Journal.

[28]  Frank Dürr,et al.  Efficient real-time trajectory tracking , 2011, The VLDB Journal.

[29]  Leonidas J. Guibas,et al.  Data-driven trajectory smoothing , 2011, GIS.

[30]  Ling Liu,et al.  NEAT: Road Network Aware Trajectory Clustering , 2012, 2012 IEEE 32nd International Conference on Distributed Computing Systems.

[31]  Kai-Florian Richter,et al.  Semantic trajectory compression: Representing urban movement in a nutshell , 2012, J. Spatial Inf. Sci..