The features of mitochondria of cardiomyocytes from rats with chronic heart failure

[1]  L. P. Kislyakova,et al.  Rat heart structural and functional characteristics and gas exchange parameters after experimental myocardial infarction , 2015, Cell and Tissue Biology.

[2]  J. Hollander,et al.  Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria: influence of cardiac pathologies. , 2014, American journal of physiology. Heart and circulatory physiology.

[3]  C. Hoppel,et al.  Mitochondrial dysfunction in heart failure , 2013, Heart Failure Reviews.

[4]  E. Baidyuk,et al.  Cellular mechanisms of rat liver regeneration after experimental myocardial infarction , 2013, Cell and Tissue Biology.

[5]  K. Clarke,et al.  Metabolic adaptation to chronic hypoxia in cardiac mitochondria , 2012, Basic Research in Cardiology.

[6]  S. Ballinger,et al.  Novel insights into interactions between mitochondria and xanthine oxidase in acute cardiac volume overload. , 2011, Free radical biology & medicine.

[7]  W. Kühlbrandt,et al.  Macromolecular organization of ATP synthase and complex I in whole mitochondria , 2011, Proceedings of the National Academy of Sciences.

[8]  D. Hausenloy,et al.  Mitochondrial morphology and cardiovascular disease. , 2010, Cardiovascular research.

[9]  Sang-Bing Ong,et al.  Inhibiting Mitochondrial Fission Protects the Heart Against Ischemia/Reperfusion Injury , 2010, Circulation.

[10]  C. Hoppel,et al.  Dynamic organization of mitochondria in human heart and in myocardial disease. , 2009, The international journal of biochemistry & cell biology.

[11]  Qizhi Gong,et al.  Mitochondrial OPA1, apoptosis, and heart failure. , 2009, Cardiovascular research.

[12]  K. Clarke,et al.  Critical role of complex III in the early metabolic changes following myocardial infarction. , 2009, Cardiovascular research.

[13]  Jean-Claude Martinou,et al.  SLP‐2 is required for stress‐induced mitochondrial hyperfusion , 2009, The EMBO journal.

[14]  Michael P. Murphy,et al.  How mitochondria produce reactive oxygen species , 2008, The Biochemical journal.

[15]  M. Bilsen,et al.  Metabolic remodelling of the failing heart: beneficial or detrimental? , 2008 .

[16]  Marko Vendelin,et al.  Three-dimensional mitochondrial arrangement in ventricular myocytes: from chaos to order. , 2006, American journal of physiology. Cell physiology.

[17]  S. Jakobs High resolution imaging of live mitochondria. , 2006, Biochimica et biophysica acta.

[18]  William C Stanley,et al.  Myocardial substrate metabolism in the normal and failing heart. , 2005, Physiological reviews.

[19]  C. Hoppel,et al.  Structural differences in two biochemically defined populations of cardiac mitochondria. , 2005, American journal of physiology. Heart and circulatory physiology.

[20]  A. Baracca,et al.  Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F(0) during ATP synthesis. , 2003, Biochimica et biophysica acta.

[21]  T. Wakabayashi Megamitochondria formation ‐ physiology and pathology , 2002, Journal of cellular and molecular medicine.

[22]  C. Hoppel,et al.  Giant Mitochondria in a Cardiomyopathic Heart , 2002, Ultrastructural pathology.

[23]  Guido Kroemer,et al.  The biochemistry of programmed cell death , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[24]  C. Hoppel,et al.  Biochemical differences between subsarcolemmal and interfibrillar mitochondria from rat cardiac muscle: effects of procedural manipulations. , 1985, Archives of biochemistry and biophysics.

[25]  C. Hoppel,et al.  Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. , 1977, The Journal of biological chemistry.

[26]  K. Walsh,et al.  Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death. , 2012, American journal of physiology. Heart and circulatory physiology.

[27]  S. Ballinger,et al.  Loss of interstitial collagen causes structural and functional alterations of cardiomyocyte subsarcolemmal mitochondria in acute volume overload. , 2011, Journal of molecular and cellular cardiology.