Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries

The Li–EG composite anode was prepared by embedding the EG in the Li metal, which induces uniform deposition of Li and inhibits Li dendrites.

[1]  Shizhao Xiong,et al.  Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites , 2019, Energy Storage Materials.

[2]  Jingze Li,et al.  Three-dimensional carbon material as stable host for dendrite-free lithium metal anodes , 2019, Electrochimica Acta.

[3]  Ya‐Xia Yin,et al.  Guiding Uniform Li Plating/Stripping through Lithium-Aluminum Alloying Medium for Long-Life Li Metal Batteries. , 2019, Angewandte Chemie.

[4]  Adelaide M. Nolan,et al.  Lithium–Graphite Paste: An Interface Compatible Anode for Solid‐State Batteries , 2019, Advanced materials.

[5]  Rui Zhang,et al.  Lithiophilic LiC6 Layers on Carbon Hosts Enabling Stable Li Metal Anode in Working Batteries , 2019, Advanced materials.

[6]  Kentaroh Watanabe,et al.  Lithiophilic 3D Nanoporous Nitrogen‐Doped Graphene for Dendrite‐Free and Ultrahigh‐Rate Lithium‐Metal Anodes , 2018, Advanced materials.

[7]  Xiaoting Lin,et al.  Dendrite-free and minimum volume change Li metal anode achieved by three-dimensional artificial interlayers , 2018, Energy Storage Materials.

[8]  J. Tu,et al.  Large-scale synthesis of high-quality lithium-graphite hybrid anodes for mass-controllable and cycling-stable lithium metal batteries , 2018, Energy Storage Materials.

[9]  Rui Zhang,et al.  An ion redistributor for dendrite-free lithium metal anodes , 2018, Science Advances.

[10]  Jiajie Liang,et al.  A Hierarchical Silver‐Nanowire–Graphene Host Enabling Ultrahigh Rates and Superior Long‐Term Cycling of Lithium‐Metal Composite Anodes , 2018, Advanced materials.

[11]  Won Il Cho,et al.  Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries , 2018, Nature Energy.

[12]  Hao Zhang,et al.  Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode , 2018, Nature Communications.

[13]  Jia Zhu,et al.  Interlayer Lithium Plating in Au Nanoparticles Pillared Reduced Graphene Oxide for Lithium Metal Anodes , 2018, Advanced Functional Materials.

[14]  Jun Liu,et al.  Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries , 2018, Nature Energy.

[15]  Jun Lu,et al.  Compact 3D Copper with Uniform Porous Structure Derived by Electrochemical Dealloying as Dendrite‐Free Lithium Metal Anode Current Collector , 2018 .

[16]  L. Wan,et al.  Robust Expandable Carbon Nanotube Scaffold for Ultrahigh‐Capacity Lithium‐Metal Anodes , 2018, Advanced materials.

[17]  Wenhua H. Zhu,et al.  Highly Reversible Li Plating Confined in Three-Dimensional Interconnected Microchannels toward High-Rate and Stable Metallic Lithium Anodes. , 2018, ACS applied materials & interfaces.

[18]  Yaxiang Lu,et al.  Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-Type Solid-State Li Batteries , 2018 .

[19]  Yitai Qian,et al.  Vacuum distillation derived 3D porous current collector for stable lithium–metal batteries , 2018 .

[20]  Rui Zhang,et al.  Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries , 2018 .

[21]  Yunhui Gong,et al.  Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework , 2018, Proceedings of the National Academy of Sciences.

[22]  Hao Zhang,et al.  ZnO/carbon framework derived from metal-organic frameworks as a stable host for lithium metal anodes , 2018 .

[23]  Lin Liu,et al.  Uniform Lithium Nucleation/Growth Induced by Lightweight Nitrogen‐Doped Graphitic Carbon Foams for High‐Performance Lithium Metal Anodes , 2018, Advanced materials.

[24]  Hong‐Jie Peng,et al.  Artificial Soft–Rigid Protective Layer for Dendrite‐Free Lithium Metal Anode , 2018 .

[25]  Ya‐Xia Yin,et al.  Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers. , 2018, Journal of the American Chemical Society.

[26]  Lin Liu,et al.  Free-Standing Hollow Carbon Fibers as High-Capacity Containers for Stable Lithium Metal Anodes , 2017 .

[27]  Rui Zhang,et al.  Columnar Lithium Metal Anodes. , 2017, Angewandte Chemie.

[28]  Ya‐Xia Yin,et al.  Stable Li Metal Anodes via Regulating Lithium Plating/Stripping in Vertically Aligned Microchannels , 2017, Advanced materials.

[29]  G. Veith,et al.  Lithium malonatoborate additives enabled stable cycling of 5 V lithium metal and lithium ion batteries , 2017 .

[30]  Yayuan Liu,et al.  Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework , 2017, Science Advances.

[31]  Kun Fu,et al.  Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries , 2017 .

[32]  X. Tao,et al.  3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries , 2017 .

[33]  Boyang Liu,et al.  Encapsulation of Metallic Na in an Electrically Conductive Host with Porous Channels as a Highly Stable Na Metal Anode. , 2017, Nano letters.

[34]  Ya‐Xia Yin,et al.  Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons. , 2017, Journal of the American Chemical Society.

[35]  Shaomao Xu,et al.  High-capacity, low-tortuosity, and channel-guided lithium metal anode , 2017, Proceedings of the National Academy of Sciences.

[36]  Yayuan Liu,et al.  An Artificial Solid Electrolyte Interphase with High Li‐Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes , 2017, Advanced materials.

[37]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[38]  M. Bazant,et al.  A soft non-porous separator and its effectiveness in stabilizing Li metal anodes cycling at 10 mA cm−2 observed in situ in a capillary cell , 2017 .

[39]  Lynden A. Archer,et al.  Design principles for electrolytes and interfaces for stable lithium-metal batteries , 2016, Nature Energy.

[40]  Yi Cui,et al.  Graphite-Encapsulated Li-Metal Hybrid Anodes for High-Capacity Li Batteries , 2016 .

[41]  Yan‐Bing He,et al.  Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes , 2016, Advanced materials.

[42]  Yayuan Liu,et al.  Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. , 2016, Nature nanotechnology.

[43]  Yi Cui,et al.  Promises and challenges of nanomaterials for lithium-based rechargeable batteries , 2016, Nature Energy.

[44]  Jin Ge,et al.  Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance. , 2016, Nano letters.

[45]  Yi Cui,et al.  Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating , 2016, Proceedings of the National Academy of Sciences.

[46]  Hyun-Wook Lee,et al.  Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth , 2016, Nature Energy.

[47]  Jianming Zheng,et al.  High Energy Density Lithium–Sulfur Batteries: Challenges of Thick Sulfur Cathodes , 2015 .

[48]  O. Borodin,et al.  High rate and stable cycling of lithium metal anode , 2015, Nature Communications.

[49]  Terence J. Lozano,et al.  Failure Mechanism for Fast‐Charged Lithium Metal Batteries with Liquid Electrolytes , 2015 .

[50]  N. Kotov,et al.  A dendrite-suppressing composite ion conductor from aramid nanofibres , 2015, Nature Communications.

[51]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[52]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[53]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[54]  B. Jang,et al.  Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells , 2012 .

[55]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[56]  P. Ngoepe,et al.  Structural and electronic properties of lithium intercalated graphite LiC 6 , 2003 .

[57]  Jiayan Luo,et al.  Bending‐Tolerant Anodes for Lithium‐Metal Batteries , 2018, Advanced materials.