Linear Parameter Varying Control for Active Flutter Suppression Based on Adaptive Reduced Order Model

Active flutter suppression was very attractive research interest with the development of the light-weight structure incorporated into aircraft design. The classic active flutter controller was often designed based on the low accurate and fidelity linear aerodynamic model. And most of them were designed with linear time invariant system without considering the time varying parameters such as Mach number, angle of attack and etc. in the real flight. A new general linear parameter varying aeroservoelastic model with the nonlinear aerodynamics based on adaptive POD method was developed. And then the LPV controller design method was developed. The Goland+ wing aeroelastic model was applied to validate the new method. The simulation results show that the new auto-schedule controller can suppress the flutter with good accuracy and robustness, and improve the flutter boundary about 20% to 30%, especially in the transonic regime. Most importantly, the LPV controller provides a good attractive tool for virtual flutter flight experiment.

[1]  Yueming Li,et al.  A nonlinear POD reduced order model for limit cycle oscillation prediction , 2010 .

[2]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[3]  Earl H. Dowell,et al.  Three-Dimensional Transonic Aeroelasticity Using Proper Orthogonal Decomposition-Based Reduced-Order Models , 2001 .

[4]  A. Packard,et al.  Gain scheduling the LPV way , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[5]  Jeffrey P. Thomas,et al.  Modeling Viscous Transonic Limit Cycle Oscillation Behavior Using a Harmonic Balance Approach , 2002 .

[6]  Liviu Librescu,et al.  Nonlinear Open-/Closed-Loop Aeroelastic Analysis of Airfoils via Volterra Series , 2004 .

[7]  Christian B Allen,et al.  Investigation of flutter suppression by active control , 2003 .

[8]  Ben S. Cazzolato,et al.  Linear-Parameter-Varying Control of an Improved Three-Degree-of-Freedom Aeroelastic Model , 2010 .

[9]  Dario H. Baldelli,et al.  UNIFIED RATIONAL FUNCTION APPROXIMATION FORMULATION FOR AEROELASTIC AND FLIGHT DYNAMICS ANALYSES , 2006 .

[10]  Jeffrey V. Zweber,et al.  Predictions of Store-Induced Limit-Cylce Oscillations Using Euler and Navier-Stokes Fluid Dynamics , 2003 .

[11]  Gene H. Golub,et al.  Matrix computations , 1983 .

[12]  Ryan F. Schmit,et al.  Improvements in low dimensional tools for flow-structure interaction problems: Using global POD , 2003 .

[13]  Walter A. Silva,et al.  Development of Reduced-Order Models for Aeroelastic Analysis and Flutter Prediction Using the CFL3Dv6.0 Code , 2002 .

[14]  Vivek Mukhopadhyay,et al.  Historical Perspective on Analysis and Control of Aeroelastic Responses , 2003 .

[15]  Liviu Librescu,et al.  Open/Closed-Loop Nonlinear Aeroelasticity for Airfoils via Volterra Series Approach , 2002 .

[16]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[17]  Chen Gang,et al.  Design of Active Control Law for Aeroelastic System Based on Proper Orthogonal Decomposition Reduced Order Model , 2010 .

[18]  Liping Xue,et al.  Efficient Aeroelastic Model Updating in Support of Flight Testing , 2009 .

[19]  W. Xie H2 gain scheduled state feedback for LPV system with new LMI formulation , 2005 .

[20]  Philip S. Beran,et al.  Analysis of Store Effects on Limit-Cycle Oscillation , 2006 .

[21]  Gary J. Balas,et al.  Gain-Scheduled Linear Fractional Control for Active Flutter Suppression , 1999 .

[22]  Zijian Zhang,et al.  Active flutter control of transonic flapped wing based on CFD/CSD coupling , 2008, 2008 Asia Simulation Conference - 7th International Conference on System Simulation and Scientific Computing.

[23]  Andrew Arena,et al.  Accelerating computational fluid dynamics based aeroelastic predictions using system identification , 2001 .

[24]  K. Badcock,et al.  Fast prediction of transonic aeroelastic stability and limit cycles , 2007 .

[25]  Thuan Lieu Adaptation of reduced order models for applications in aeroelasticity , 2004 .

[26]  Charbel Farhat,et al.  POD-based Aeroelastic Analysis of a Complete F-16 Configuration: ROM Adaptation and Demonstration , 2005 .

[27]  P. Beran,et al.  Reduced-order modeling: new approaches for computational physics , 2004 .

[28]  Carsten W. Scherer,et al.  Robust mixed control and linear parameter-varying control with full block scalings , 1999 .

[29]  F. E. Eastep,et al.  Transonic Flutter Analysis of a Rectangular Wing with Conventional Airfoil Sections , 1979 .

[30]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[31]  George Platanitis,et al.  Control of a Nonlinear Wing Section Using Leading- and Trailing-Edge Surfaces , 2004 .