Linear Parameter Varying Control for Active Flutter Suppression Based on Adaptive Reduced Order Model
暂无分享,去创建一个
Chen Gang | Sun Jian | Zuo Yingtao | Zuo Yingtao | Sun Jian | Chen Gang
[1] Yueming Li,et al. A nonlinear POD reduced order model for limit cycle oscillation prediction , 2010 .
[2] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[3] Earl H. Dowell,et al. Three-Dimensional Transonic Aeroelasticity Using Proper Orthogonal Decomposition-Based Reduced-Order Models , 2001 .
[4] A. Packard,et al. Gain scheduling the LPV way , 1996, Proceedings of 35th IEEE Conference on Decision and Control.
[5] Jeffrey P. Thomas,et al. Modeling Viscous Transonic Limit Cycle Oscillation Behavior Using a Harmonic Balance Approach , 2002 .
[6] Liviu Librescu,et al. Nonlinear Open-/Closed-Loop Aeroelastic Analysis of Airfoils via Volterra Series , 2004 .
[7] Christian B Allen,et al. Investigation of flutter suppression by active control , 2003 .
[8] Ben S. Cazzolato,et al. Linear-Parameter-Varying Control of an Improved Three-Degree-of-Freedom Aeroelastic Model , 2010 .
[9] Dario H. Baldelli,et al. UNIFIED RATIONAL FUNCTION APPROXIMATION FORMULATION FOR AEROELASTIC AND FLIGHT DYNAMICS ANALYSES , 2006 .
[10] Jeffrey V. Zweber,et al. Predictions of Store-Induced Limit-Cylce Oscillations Using Euler and Navier-Stokes Fluid Dynamics , 2003 .
[11] Gene H. Golub,et al. Matrix computations , 1983 .
[12] Ryan F. Schmit,et al. Improvements in low dimensional tools for flow-structure interaction problems: Using global POD , 2003 .
[13] Walter A. Silva,et al. Development of Reduced-Order Models for Aeroelastic Analysis and Flutter Prediction Using the CFL3Dv6.0 Code , 2002 .
[14] Vivek Mukhopadhyay,et al. Historical Perspective on Analysis and Control of Aeroelastic Responses , 2003 .
[15] Liviu Librescu,et al. Open/Closed-Loop Nonlinear Aeroelasticity for Airfoils via Volterra Series Approach , 2002 .
[16] P. Holmes,et al. Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .
[17] Chen Gang,et al. Design of Active Control Law for Aeroelastic System Based on Proper Orthogonal Decomposition Reduced Order Model , 2010 .
[18] Liping Xue,et al. Efficient Aeroelastic Model Updating in Support of Flight Testing , 2009 .
[19] W. Xie. H2 gain scheduled state feedback for LPV system with new LMI formulation , 2005 .
[20] Philip S. Beran,et al. Analysis of Store Effects on Limit-Cycle Oscillation , 2006 .
[21] Gary J. Balas,et al. Gain-Scheduled Linear Fractional Control for Active Flutter Suppression , 1999 .
[22] Zijian Zhang,et al. Active flutter control of transonic flapped wing based on CFD/CSD coupling , 2008, 2008 Asia Simulation Conference - 7th International Conference on System Simulation and Scientific Computing.
[23] Andrew Arena,et al. Accelerating computational fluid dynamics based aeroelastic predictions using system identification , 2001 .
[24] K. Badcock,et al. Fast prediction of transonic aeroelastic stability and limit cycles , 2007 .
[25] Thuan Lieu. Adaptation of reduced order models for applications in aeroelasticity , 2004 .
[26] Charbel Farhat,et al. POD-based Aeroelastic Analysis of a Complete F-16 Configuration: ROM Adaptation and Demonstration , 2005 .
[27] P. Beran,et al. Reduced-order modeling: new approaches for computational physics , 2004 .
[28] Carsten W. Scherer,et al. Robust mixed control and linear parameter-varying control with full block scalings , 1999 .
[29] F. E. Eastep,et al. Transonic Flutter Analysis of a Rectangular Wing with Conventional Airfoil Sections , 1979 .
[30] C. Farhat,et al. Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .
[31] George Platanitis,et al. Control of a Nonlinear Wing Section Using Leading- and Trailing-Edge Surfaces , 2004 .