Elliptic equations with measurable coefficients in Reifenberg domains

Abstract We prove W 1 , p estimates for elliptic equations in divergence form under the assumption that for each point and for each sufficiently small scale there is a coordinate system so that the coefficients have small oscillation in ( n − 1 ) directions. We assume the boundary to be δ-Reifenberg flat and the coefficients having small oscillation in the flat direction of the boundary.

[1]  G. Mingione,et al.  Gradient regularity for elliptic equations in the Heisenberg group , 2007, 0708.3655.

[2]  Elias M. Stein,et al.  Harmonic Analysis (PMS-43), Volume 43: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. (PMS-43) , 1993 .

[3]  F. John,et al.  On functions of bounded mean oscillation , 1961 .

[4]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[5]  Lihe Wang,et al.  A geometric approach to the topological disk theorem of Reifenberg , 2007 .

[6]  N. Krylov Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms , 2007 .

[7]  Lihe Wang,et al.  Gradient estimates for elliptic systems in non-smooth domains , 2008 .

[8]  P. Auscher,et al.  Observations on $W^{1,p}$ estimates for divergence elliptic equations with VMO coefficients , 2002 .

[9]  Hongjie Dong,et al.  Parabolic and Elliptic Systems in Divergence Form with Variably Partially BMO Coefficients , 2009, SIAM J. Math. Anal..

[10]  N. Meyers An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations , 1963 .

[11]  E. J. McShane,et al.  Solution of the Plateau problem form-dimensional surfaces of varying topological type , 1960 .

[12]  Christoph Scheven,et al.  Asymptotically regular problems I: Higher integrability , 2010 .

[13]  C. Simader On Dirichlet's boundary value problem : an L「上p上」-theory based on a generalization of Gårding's inequality , 1972 .

[14]  G. Mingione Gradient estimates below the duality exponent , 2010 .

[15]  E. Acerbi,et al.  Gradient estimates for a class of parabolic systems , 2007 .

[16]  G. David,et al.  A generalization of Reifenberg’s theorem in R , 2006, math/0607441.

[17]  Lihe Wang,et al.  The Conormal Derivative Problem for Elliptic Equations with BMO Coefficients on Reifenberg Flat Domains , 2005 .

[18]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[19]  L. Caffarelli,et al.  On W1,p estimates for elliptic equations in divergence form , 1998 .

[20]  Carlos E. Kenig,et al.  The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .

[21]  N. V. Krylov Parabolic and Elliptic Equations with VMO Coefficients , 2005 .

[22]  L. Caffarelli,et al.  Fully Nonlinear Elliptic Equations , 1995 .

[23]  Lihe Wang,et al.  Parabolic equations in time dependent Reifenberg domains , 2007 .

[24]  N. Krylov,et al.  Second-order elliptic equations with variably partially VMO coefficients , 2008, 0807.0926.

[25]  D. Sarason Functions of vanishing mean oscillation , 1975 .

[26]  Mariano Giaquinta,et al.  Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105 , 1984 .

[27]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[28]  Doyoon Kim,et al.  Elliptic Equations in Divergence Form with Partially BMO Coefficients , 2008, 0810.4716.

[29]  Lihe Wang,et al.  Elliptic equations with BMO coefficients in Reifenberg domains , 2004 .