Correlation of neuropsychological and metabolic changes after epilepsy surgery in patients with left mesial temporal lobe epilepsy with hippocampal sclerosis

[1]  D. Floden,et al.  Estimating risk of word-finding problems in adults undergoing epilepsy surgery , 2016, Neurology.

[2]  W. van Paesschen,et al.  Outcome after epilepsy surgery at the University Hospitals Leuven 1998–2012 , 2016, Acta Neurologica Belgica.

[3]  Stefan Eberl,et al.  The relationship between neuropsychological functioning and FDG-PET hypometabolism in intractable mesial temporal lobe epilepsy , 2015, Epilepsy & Behavior.

[4]  Patrick Dupont,et al.  Voxel-based comparison of state-of-the-art reconstruction algorithms for 18F-FDG PET brain imaging using simulated and clinical data , 2014, NeuroImage.

[5]  Dong Zhou,et al.  Short-term cognitive changes after surgery in patients with unilateral mesial temporal lobe epilepsy associated with hippocampal sclerosis , 2014, Journal of Clinical Neuroscience.

[6]  P. Pennell,et al.  Remediation of a Naming Deficit Following Left Temporal Lobe Epilepsy Surgery , 2014, Applied neuropsychology. Adult.

[7]  Katie L. McMahon,et al.  Facilitation of naming in aphasia with auditory repetition: An investigation of neurocognitive mechanisms , 2013, Neuropsychologia.

[8]  John S. Duncan,et al.  Hippocampal activation correlates with visual confrontation naming: fMRI findings in controls and patients with temporal lobe epilepsy , 2011, Epilepsy Research.

[9]  Samuel Wiebe,et al.  Neuropsychological outcomes after epilepsy surgery: Systematic review and pooled estimates , 2011, Epilepsia.

[10]  G. Avanzini,et al.  Immune‐mediated epilepsies , 2011, Epilepsia.

[11]  Cornelius Weiller,et al.  Reduced Precuneus Deactivation during Object Naming in Patients with Mild Cognitive Impairment, Alzheimer’s Disease, and Frontotemporal Lobar Degeneration , 2010, Dementia and Geriatric Cognitive Disorders.

[12]  K. Byth,et al.  The topography and significance of extratemporal hypometabolism in refractory mesial temporal lobe epilepsy examined by FDG‐PET , 2010, Epilepsia.

[13]  Patrick Dupont,et al.  Anatomy-based reconstruction of FDG-PET images with implicit partial volume correction improves detection of hypometabolic regions in patients with epilepsy due to focal cortical dysplasia diagnosed on MRI , 2010, European Journal of Nuclear Medicine and Molecular Imaging.

[14]  R. Wennberg,et al.  The contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy A meta-analysis , 2007, Seizure.

[15]  Chris Rorden,et al.  Neural correlates of phonological and semantic-based anomia treatment in aphasia , 2007, Neuropsychologia.

[16]  Samuel Wiebe,et al.  Long-term outcomes in epilepsy surgery: antiepileptic drugs, mortality, cognitive and psychosocial aspects. , 2007, Brain : a journal of neurology.

[17]  Patrick Dupont,et al.  Correlations of interictal FDG-PET metabolism and ictal SPECT perfusion changes in human temporal lobe epilepsy with hippocampal sclerosis , 2006, NeuroImage.

[18]  Jelle Jolles,et al.  The Stroop Color-Word Test , 2006, Assessment.

[19]  Byung Tae Kim,et al.  Postoperative alteration of cerebral glucose metabolism in mesial temporal lobe epilepsy. , 2005, Brain : a journal of neurology.

[20]  J. Jolles,et al.  Change in Sensory Functioning Predicts Change in Cognitive Functioning: Results from a 6‐Year Follow‐Up in the Maastricht Aging Study , 2005, Journal of the American Geriatrics Society.

[21]  Dae Won Seo,et al.  Extratemporal hypometabolism on FDG PET in temporal lobe epilepsy as a predictor of seizure outcome after temporal lobectomy , 2003, European Journal of Nuclear Medicine and Molecular Imaging.

[22]  M. Jones-Gotman,et al.  Memory Deficits after Resection from Left or Right Anterior Temporal Lobe in Humans: A Meta‐Analytic Review , 2002, Epilepsia.

[23]  P. Kwan,et al.  Early identification of refractory epilepsy. , 2000, The New England journal of medicine.

[24]  B. Ghetti,et al.  FDG‐PET and MRI in temporal lobe epilepsy: relationship to febrile seizures, hippocampal sclerosis and outcome , 1998, Acta neurologica Scandinavica.

[25]  W H Theodore,et al.  Effect of Valproate on Cerebral Metabolism and Blood Flow: An 18F‐2‐Deoxyglusose and 15O Water Positron Emission Tomography Study , 1996, Epilepsia.

[26]  R. Kessler,et al.  Postsurgical outcome of patients with uncontrolled complex partial seizures and temporal lobe hypometabolism on 18FDG-positron emission tomography. , 1996, Investigative radiology.

[27]  C E Elger,et al.  Cognitive Consequences of Two‐Thirds Anterior Temporal Lobectomy on Verbal Memory in 144 Patients: A Three‐Month Follow‐Up Study , 1996, Epilepsia.

[28]  Mark S. Seidenberg,et al.  Relationship of Age at Onset, Chronologic Age, and Adequacy of Preoperative Performance to Verbal Memory Change After Anterior Temporal Lobectomy , 1995, Epilepsia.

[29]  A. Alavi,et al.  Predictors of outcome after anterior temporal lobectomy , 1994, Neurology.

[30]  E. Bromfield,et al.  The dynamics of metabolic change following seizures as measured by positron emission tomography with fludeoxyglucose F 18. , 1994, Archives of neurology.

[31]  R. Coleman,et al.  Temporal lobe hypometabolism on PET , 1993, Neurology.

[32]  Conrad V. Kufta,et al.  Temporal lobectomy for uncontrolled seizures: The role of positron emission tomography , 1992, Annals of neurology.

[33]  B. Kolb,et al.  Cortical and striatal structure and connectivity are altered by neonatal hemidecortication in rats , 1992, The Journal of comparative neurology.

[34]  W H Theodore,et al.  Antiepileptic Drugs and Cerebral Glucose Metabolism , 1988, Epilepsia.

[35]  W H Theodore,et al.  Neuroimaging in refractory partial seizures , 1986, Neurology.

[36]  Michael Channing,et al.  {18F}fluorodeoxyglucose positron emission tomography in refractory complex partial seizures , 1983, Annals of neurology.

[37]  A. Alavi,et al.  The [18F]Fluorodeoxyglucose Method for the Measurement of Local Cerebral Glucose Utilization in Mane , 1979, Circulation research.

[38]  H. Fukuyama,et al.  Improved cerebral function in mesial temporal lobe epilepsy after subtemporal amygdalohippocampectomy. , 2009, Brain : a journal of neurology.

[39]  A. Alavi,et al.  Positron emission tomography imaging of regional cerebral glucose metabolism. , 1986, Seminars in nuclear medicine.