Cognitive and neural mechanisms of visual search

[1]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[2]  S J Luck,et al.  Spatial filtering during visual search: evidence from human electrophysiology. , 1994, Journal of experimental psychology. Human perception and performance.

[3]  H. Pashler,et al.  Negligible Effect of Spatial Precuing on Identification of Single Digits , 1994 .

[4]  S J Luck,et al.  Effects of spatial cuing on luminance detectability: psychophysical and electrophysiological evidence for early selection. , 1994, Journal of experimental psychology. Human perception and performance.

[5]  Jeffrey D. Schall,et al.  Neural basis of saccade target selection in frontal eye field during visual search , 1993, Nature.

[6]  C. Koch,et al.  An oscillation-based model for the neuronal basis of attention , 1993, Vision Research.

[7]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  B. C. Motter Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. , 1993, Journal of neurophysiology.

[9]  Marcia Grabowecky,et al.  Preattentive Processes Guide Visual Search: Evidence from Patients with Unilateral Visual Neglect , 1993, Journal of Cognitive Neuroscience.

[10]  John Duncan,et al.  A neural basis for visual search in inferior temporal cortex , 1993, Nature.

[11]  Christof Koch,et al.  Computational approaches to cognition: the bottom-up view , 1993, Current Opinion in Neurobiology.

[12]  S. Luck,et al.  Attention-Related Modulation of Sensory-Evoked Brain Activity in a Visual Search Task , 1993, Journal of Cognitive Neuroscience.

[13]  M. Corbetta,et al.  A PET study of visuospatial attention , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  H. Nothdurft Saliency effects across dimensions in visual search , 1993, Vision Research.

[15]  J. Palmer,et al.  Measuring the effect of attention on simple visual search. , 1993, Journal of experimental psychology. Human perception and performance.

[16]  H. J. Muller,et al.  SEarch via Recursive Rejection (SERR): A Connectionist Model of Visual Search , 1993, Cognitive Psychology.

[17]  Zijiang J. He,et al.  Surfaces versus features in visual search , 1992, Nature.

[18]  I. Biederman,et al.  Dynamic binding in a neural network for shape recognition. , 1992, Psychological review.

[19]  M. Young,et al.  On oscillating neuronal responses in the visual cortex of the monkey. , 1992, Journal of neurophysiology.

[20]  Bernardo A. Huberman,et al.  Binding Hierarchies: A Basis for Dynamic Perceptual Grouping , 1992, Neural Computation.

[21]  J. Duncan,et al.  Beyond the search surface: visual search and attentional engagement. , 1992, Journal of experimental psychology. Human perception and performance.

[22]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[23]  M. Tovée,et al.  Oscillatory activity is not evident in the primate temporal visual cortex with static stimuli , 1992, Neuroreport.

[24]  David L. Sparks,et al.  Movement selection in advance of action in the superior colliculus , 1992, Nature.

[25]  Richard S. Zemel,et al.  Learning to Segment Images Using Dynamic Feature Binding , 1991, Neural Computation.

[26]  R T Knight,et al.  Cortical substrates supporting visual search in humans. , 1991, Cerebral cortex.

[27]  P. Cavanagh,et al.  Comparing the cerebral hemispheres on the speed of spatial shifts of visual attention: Evidence from serial search , 1990, Neuropsychologia.

[28]  A. Treisman,et al.  Conjunction search revisited , 1990 .

[29]  A. Damasio Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition , 1989, Cognition.

[30]  Susan L. Franzel,et al.  Guided search: an alternative to the feature integration model for visual search. , 1989, Journal of experimental psychology. Human perception and performance.

[31]  J. Duncan,et al.  Visual search and stimulus similarity. , 1989, Psychological review.

[32]  Geoffrey E. Hinton,et al.  Distributed Representations , 1986, The Philosophy of Artificial Intelligence.

[33]  A. Treisman,et al.  Search asymmetry: a diagnostic for preattentive processing of separable features. , 1985, Journal of experimental psychology. General.

[34]  Azriel Rosenfeld,et al.  Human and Machine Vision , 1983 .

[35]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[36]  Joseph S. Lappin,et al.  Does prior knowledge facilitate the detection of visual targets in random noise? , 1976 .

[37]  S. Luck,et al.  The role of attention in feature detection and conjunction discrimination: an electrophysiological analysis. , 1995, The International journal of neuroscience.

[38]  Lynn C. Robertson,et al.  Search deficits in neglect patients are dependent on size of the visual scene. , 1994 .

[39]  Steven A. Hillyard,et al.  Independent Attentional Scanning in the Separated Hemispheres of Split-Brain Patients , 1994, Journal of Cognitive Neuroscience.

[40]  Deborah J. Aks,et al.  Visual search for direction of shading is influenced by apparent depth , 1992, Perception & psychophysics.

[41]  Michael C. Mozer,et al.  The perception of multiple objects , 1991 .

[42]  C. Koch,et al.  Towards a neurobiological theory of consciousness , 1990 .

[43]  V. Ramachandran,et al.  On the perception of shape from shading , 1988, Nature.

[44]  Feldman,et al.  Connectionist models and parallelism in high-level vision. Technical report , 1985 .