Composite Wavelet Bases with Extended Stability and Cancellation Properties
暂无分享,去创建一个
[1] Wolfgang Dahmen,et al. Composite wavelet bases for operator equations , 1999, Math. Comput..
[2] W. Dahmen. Stability of Multiscale Transformations. , 1995 .
[3] Wolfgang Dahmen,et al. Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..
[4] Jinchao Xu,et al. Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..
[5] Rob Stevenson,et al. On the Compressibility of Operators in Wavelet Coordinates , 2004, SIAM J. Math. Anal..
[6] Wolfgang Dahmen,et al. Compression Techniques for Boundary Integral Equations - Optimal Complexity Estimates , 2006 .
[7] Rob Stevenson,et al. Locally Supported, Piecewise Polynomial Biorthogonal Wavelets on Nonuniform Meshes , 2000 .
[8] Wolfgang Dahmen,et al. Compression Techniques for Boundary Integral Equations - Asymptotically Optimal Complexity Estimates , 2006, SIAM J. Numer. Anal..
[9] Claudio Canuto,et al. The wavelet element method. Part I: Construction and analysis. , 1997 .
[10] Rob Stevenson,et al. Finite‐element wavelets on manifolds , 2003 .
[11] Albert Cohen,et al. Wavelet adaptive method for second order elliptic problems: boundary conditions and domain decomposition , 2000, Numerische Mathematik.
[12] Rob Stevenson,et al. Stable three-point wavelet bases on general meshes , 1998, Numerische Mathematik.
[13] Angela Kunoth,et al. Wavelets on manifolds: An optimized construction , 2006, Math. Comput..
[14] W. Dahmen,et al. Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .
[15] W. Dahmen. Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.
[16] Wolfgang Dahmen,et al. Element-by-Element Construction of Wavelets Satisfying Stability and Moment Conditions , 1999, SIAM J. Numer. Anal..
[17] Wolfgang Dahmen,et al. Local Decomposition of Refinable Spaces and Wavelets , 1996 .
[18] Hoang-Ngan Nguyen,et al. Finite element wavelets for solving partial differential equations , 2005 .
[19] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[20] A. Cohen. Numerical Analysis of Wavelet Methods , 2003 .
[21] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[22] Wolfgang Dahmen,et al. Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..
[23] Rob P. Stevenson,et al. An optimal adaptive wavelet method without coarsening of the iterands , 2006, Math. Comput..
[24] Panayot S. Vassilevski,et al. Stabilizing the Hierarchical Basis by Approximate Wavelets II: Implementation and Numerical Results , 1998, SIAM J. Sci. Comput..