Indoor wireless systems poses one of the biggest design challenges although it is the most flexible and easily deployable method of implementing Local Area Networks. This difficulty in predicting the propagation of radio frequency wave in indoor environments is caused by reflection, refraction, diffraction and scattering of signals due to closed proximities to furniture, walls, human beings, and reflectors like ceiling, mirrors and glasses. To help improve the user experience and guarantee good quality of service in indoor situations, the research investigated the throughput and attenuation effect on signal with respect to 4, 5, 6 and 9 inches sizes of blocks walls respectively. The characterized Path-loss exponent was 1.999 and differed from the free space model, Wall and Floor Factor model and ITU model by 53.54dB, 6.42dB and 6.85dB respectively.