A flexible high potential printed battery for powering printed electronics

Mechanically flexible arrays of alkaline electrochemical cells fabricated using stencil printing onto fibrous substrates are shown to provide the necessary performance characteristics for driving ink-jet printed circuits. Due to the dimensions and material set currently required for reliable low-temperature print processing of electronic devices, a battery potential greater than that sourced by single cells is typically needed. The developed battery is a series interconnected array of 10 low resistance Zn-MnO2 alkaline cells, giving an open circuit potential of 14 V. This flexible battery is used to power an ink-jet printed 5-stage complementary ring oscillator based on organic semiconductors.

[1]  A. Kozawa,et al.  The Manganese Dioxide Electrode in Alkaline Electrolyte; The Electron‐Proton Mechanism for the Discharge Process from MnO2 to MnO1.5 , 1966 .

[2]  R. Huggins Solid State Ionics , 1989 .

[3]  C. E. Tracy,et al.  All‐Solid‐State Rocking Chair Lithium Battery on a Flexible Al Substrate , 1999 .

[4]  J. Bates Thin-Film Lithium and Lithium-Ion Batteries , 2000 .

[5]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[6]  C. Dimitrakopoulos,et al.  Organic Thin Film Transistors for Large Area Electronics , 2002 .

[7]  Ute Zschieschang,et al.  Low-voltage organic transistors with an amorphous molecular gate dielectric , 2004, Nature.

[8]  Robert A. Street,et al.  All jet-printed polymer thin-film transistor active-matrix backplanes , 2004 .

[9]  Vivek Subramanian,et al.  Progress Toward Development of All-Printed RFID Tags: Materials, Processes, and Devices , 2005, Proceedings of the IEEE.

[10]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[11]  Tobin J. Marks,et al.  σ-π molecular dielectric multilayers for low-voltage organic thin-film transistors , 2005 .

[12]  J. Cook,et al.  Nonwovens as Separators for Alkaline Batteries An Overview , 2007 .

[13]  P. Ajayan,et al.  Flexible energy storage devices based on nanocomposite paper , 2007, Proceedings of the National Academy of Sciences.

[14]  Hiroyuki Nishide,et al.  Toward Flexible Batteries , 2008, Science.

[15]  J. Malherbe,et al.  Thin Solid Films , 2008 .

[16]  Vivek Subramanian,et al.  Patternable polymer bulk heterojunction photovoltaic cells on plastic by rotogravure printing , 2009 .

[17]  Arto Maaninen,et al.  Gravure printed organic light emitting diodes for lighting applications , 2009 .

[18]  Yi Cui,et al.  Highly conductive paper for energy-storage devices , 2009, Proceedings of the National Academy of Sciences.

[19]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[20]  Sanjiv Sambandan,et al.  Electrical stability of inkjet-patterned organic complementary inverters measured in ambient conditions , 2009 .

[21]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[22]  Hagen Klauk,et al.  Organic thin-film transistors. , 2010, Chemical Society reviews.

[23]  Yi Cui,et al.  Thin, flexible secondary Li-ion paper batteries. , 2010, ACS nano.

[24]  James W. Evans,et al.  Direct write dispenser printing of a zinc microbattery with an ionic liquid gel electrolyte , 2010 .

[25]  Luzhuo Chen,et al.  Highly flexible and all-solid-state paperlike polymer supercapacitors. , 2010, Nano letters.

[26]  Christian M. Siket,et al.  Arrays of Ultracompliant Electrochemical Dry Gel Cells for Stretchable Electronics , 2010, Advanced materials.

[27]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[28]  Wei Zhang,et al.  Printed Sub‐2 V Gel‐Electrolyte‐Gated Polymer Transistors and Circuits , 2010 .

[29]  A. Arias,et al.  Materials and applications for large area electronics: solution-based approaches. , 2010, Chemical reviews.

[30]  Markku Rouvala,et al.  Nanomaterial-enhanced all-solid flexible zinc--carbon batteries. , 2010, ACS nano.

[31]  M. Peckerar,et al.  A novel high energy density flexible galvanic cell , 2011 .

[32]  Tse Nga Ng,et al.  Organic inkjet-patterned memory array based on ferroelectric field-effect transistors , 2011 .

[33]  Daniel A. Steingart,et al.  Electrochemical-Mechanical Analysis of Printed Silver Electrodes in a Microfluidic Device , 2011 .

[34]  Keon Jae Lee,et al.  Bendable inorganic thin-film battery for fully flexible electronic systems. , 2012, Nano letters.

[35]  Tse Nga Ng,et al.  Scalable printed electronics: an organic decoder addressing ferroelectric non-volatile memory , 2012, Scientific Reports.

[36]  Vivek Subramanian,et al.  Characterization and optimization of a printed, primary silver–zinc battery , 2012 .

[37]  Howie N. Chu,et al.  Highly Stretchable Alkaline Batteries Based on an Embedded Conductive Fabric , 2012, Advanced materials.

[38]  Vivek Subramanian,et al.  High‐Performance Printed Transistors Realized Using Femtoliter Gravure‐Printed Sub‐10 μm Metallic Nanoparticle Patterns and Highly Uniform Polymer Dielectric and Semiconductor Layers , 2012, Advanced materials.

[39]  Richard Moser,et al.  Intrinsically stretchable and rechargeable batteries for self-powered stretchable electronics , 2013 .

[40]  Daniel A. Steingart,et al.  Reinforced Electrode Architecture for a Flexible Battery with Paperlike Characteristics , 2013 .

[41]  Jonathan A. Fan,et al.  Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems , 2013, Nature Communications.