Polymer interfaces used in electrochemical DNA-based biosensors

Nowadays DNA-based biosensors represent powerful tools for the study of DNA sequence, DNA chemical interactions and damage. Among them, biosensors with an electrochemical signal transducer play the most important role. The performance of a biosensor strongly depends on the method of a biorecognition element being attached to the electrode. This review refers to polymer materials being used to create a DNA-electrode interface. The main terminology is given in Introduction followed by a description of polymers and polymer-based nanocomposites and their electrochemical properties. A comprehensive table reports examples of the electrochemical detection of DNA immobilized on the polymer matrix. Finally, a short survey is given.

[1]  J. Xin,et al.  Decoration of carbon nanotubes with chitosan , 2005 .

[2]  Lam Dai Tran,et al.  Study of the DNA hybridization transduction behavior of a quinone-containing electroactive polymer by cyclic voltammetry and electrochemical impedance spectroscopy , 2005 .

[3]  Joseph Wang Carbon‐Nanotube Based Electrochemical Biosensors: A Review , 2005 .

[4]  J. Zen,et al.  Simultaneous determination of guanine and adenine contents in DNA, RNA and synthetic oligonucleotides using a chemically modified electrode , 1999 .

[5]  A. T. Ponomarenko,et al.  Electrical properties of composites based on conjugated polymers and conductive fillers , 2003 .

[6]  K. B. Oldham,et al.  Fundamentals of electrochemical science , 1993 .

[7]  D. Guérard,et al.  On the formula and structure of the first stage graphite-metal compounds , 1981 .

[8]  A. Voulgaropoulos,et al.  Voltammetric study of interaction between polymers (PEI and TMO) and pDNA on a hanging mercury drop electrode. , 2005, Journal of pharmaceutical and biomedical analysis.

[9]  Wen Lu,et al.  Stable Conducting Polymer Electrochemical Devices Incorporating Ionic Liquids , 2003 .

[10]  Guo-Li Shen,et al.  A nano-porous CeO(2)/Chitosan composite film as the immobilization matrix for colorectal cancer DNA sequence-selective electrochemical biosensor. , 2006, Talanta.

[11]  Guo Hongxia,et al.  Electrochemical detection of short sequences related to the hepatitis B virus using MB on chitosan-modified CPE. , 2007, Bioelectrochemistry.

[12]  Lin Yang,et al.  Impedance DNA Biosensor Using Electropolymerized Polypyrrole/Multiwalled Carbon Nanotubes Modified Electrode , 2006 .

[13]  G. K. Budnikov,et al.  Electrochemical properties of a two-component DNA-polyaniline film at the surface of glassy carbon electrode , 2007 .

[14]  A. Ramanavičius,et al.  Electrochemical sensors based on conducting polymer—polypyrrole , 2006 .

[15]  Charles Cougnon,et al.  Detection and modelling of DNA hybridization by EIS measurements. Mention of a polythiophene matrix suitable for electrochemically controlled gene delivery. , 2007, Biosensors & bioelectronics.

[16]  A. Merkoçi,et al.  Graphite-epoxy composites as a new transducing material for electrochemical genosensing. , 2003, Biosensors & bioelectronics.

[17]  B D Ratner,et al.  Surface modification of polymers: chemical, biological and surface analytical challenges. , 1995, Biosensors & bioelectronics.

[18]  D. E. Ryan,et al.  The chromatographic properties of transition metal complexes of pyridine-2-aldehyde-2-quinolylhydrazone , 1968 .

[19]  M. Fojta,et al.  Voltammetric Behavior of Osmium‐Labeled DNA at Mercury Meniscus‐Modified Solid Amalgam Electrodes. Detecting DNA Hybridization , 2006 .

[20]  Shlomi Dolev,et al.  Self-stabilizing group communication in directed networks , 2003, Acta Informatica.

[21]  Geunbae Lim,et al.  DNA hybridization electrochemical sensor using conducting polymer. , 2003, Biosensors & bioelectronics.

[22]  E. Paleček,et al.  Past, present and future of nucleic acids electrochemistry. , 2002, Talanta.

[23]  Jian-hui Jiang,et al.  Enzymatic amplification detection of DNA based on "molecular beacon" biosensors. , 2008, Biosensors & bioelectronics.

[24]  P. Hammond,et al.  Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors. , 2007, Soft matter.

[25]  A. Jen,et al.  New environmentally responsive fluorescent N-isopropylacrylamide copolymer and its application to DNA sensing , 2006 .

[26]  Hyunmin Yi,et al.  Biofabrication with chitosan. , 2005, Biomacromolecules.

[27]  Bodo Fiedler,et al.  Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites , 2006 .

[28]  Christian Soeller,et al.  Synthesis of a functionalized polythiophene as an active substrate for a label-free electrochemical genosensor , 2007 .

[29]  V. Mirsky,et al.  Surface plasmon resonance biosensor for enrofloxacin based on deoxyribonucleic acid. , 2007, Analytica chimica acta.

[30]  M. Wasielewski,et al.  Dynamics of inter- and intrastrand hole transport in DNA hairpins. , 2002, Journal of the American Chemical Society.

[31]  Lin He,et al.  Surface passivation using oligo(ethylene glycol) in ATRP-assisted DNA detection , 2008 .

[32]  V. Finkenstadt Natural polysaccharides as electroactive polymers , 2005, Applied Microbiology and Biotechnology.

[33]  J. Janata,et al.  Control of Chloride Ion Exchange by DNA Hybridization at Polypyrrole Electrode , 2005 .

[34]  A. Guadalupe,et al.  Morphological studies of oligodeoxyribonucleotides probes covalently immobilized at polystyrene modified surfaces. , 2005, Journal of biotechnology.

[35]  A. Erdem,et al.  Nanomaterial-based electrochemical DNA sensing strategies. , 2007, Talanta.

[36]  Christian Soeller,et al.  Electrochemical detection of DNA hybridization amplified by nanoparticles. , 2006, Biosensors & bioelectronics.

[37]  Bengt Herbert Kasemo,et al.  Biological surface science , 1998 .

[38]  M. Fojta,et al.  Adsorption of peptide nucleic acid and DNA decamers at electrically charged surfaces. , 1997, Biophysical journal.

[39]  Yu Chen,et al.  A Fast, Sensitive and Label Free Electrochemical DNA Sensor , 2006 .

[40]  Jan Labuda,et al.  Disposable Electrochemical Biosensor with Multiwalled Carbon Nanotubes-Chitosan Composite Layer for the Detection of Deep DNA Damage , 2008, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[41]  Christian Soeller,et al.  Novel Conducting Polymers for DNA Sensing , 2007 .

[42]  Frieder W. Scheller,et al.  Electrochemistry of nucleic acids and proteins : towards electrochemical sensors for genomics and proteomics , 2005 .

[43]  C. Banks,et al.  Chemically Modified Carbon Nanotubes for Use in Electroanalysis , 2006 .

[44]  Richard D. McCullough,et al.  THE CHEMISTRY OF CONDUCTING POLYTHIOPHENES , 1998 .

[45]  A. Killard,et al.  Optimisation and characterisation of biosensors based on polyaniline. , 2005, Talanta.

[46]  Kagan Kerman,et al.  Label‐Free and Label Based Electrochemical Detection of Hybridization by Using Methylene Blue and Peptide Nucleic Acid Probes at Chitosan Modified Carbon Paste Electrodes , 2002 .

[47]  Rémy Dendievel,et al.  Carbon nanotube-filled polymer composites. Numerical simulation of electrical conductivity in three-dimensional entangled fibrous networks , 2006 .

[48]  S. I. Kim,et al.  Electroactive polymer hydrogels composed of polyacrylic acid and poly(vinyl sulfonic acid) copolymer for application of biomaterial , 2005 .

[49]  C. W. Saunders,et al.  A review of the synthesis, chemistry and analysis of nitrocellulose , 1990 .

[50]  J. D. Stuart,et al.  Toxicity screening by electrochemical detection of DNA damage by metabolites generated in situ in ultrathin DNA-enzyme films. , 2003, Journal of the American Chemical Society.

[51]  J. Barton,et al.  Long-range oxidative damage to DNA: effects of distance and sequence. , 1999, Chemistry & biology.

[52]  E. Alocilja,et al.  Polyaniline synthesis and its biosensor application. , 2005, Biosensors & bioelectronics.

[53]  David L. Carroll,et al.  Polymer–nanotube composites for transparent, conducting thin films ☆ , 2005 .

[54]  T. Imato,et al.  Poly(hydroquinone)-coated electrode for immobilizing of 5′-amine functioned capture probe DNA and electrochemical response to DNA hybridization , 2006 .

[55]  T. Livache,et al.  Biotin/avidin system for the generation of fully renewable DNA sensor based on biotinylated polypyrrole film , 2004 .

[56]  M. Bodnár,et al.  Preparation and characterization of chitosan-based nanoparticles. , 2005, Biomacromolecules.

[57]  Yuehe Lin,et al.  Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes , 2002 .

[58]  Shanchao Liu,et al.  DNA biosensor based on chitosan film doped with carbon nanotubes. , 2005, Analytical biochemistry.

[59]  Giovanna Marrazza,et al.  Electrochemical and piezoelectric DNA biosensors for hybridisation detection. , 2008, Analytica chimica acta.

[60]  B. Limoges,et al.  Evaluation of the analytical performances of avidin-modified carbon sensors based on a mediated horseradish peroxidase enzyme label and their application to the amperometric detection of nucleic acids. , 2007, Biosensors & bioelectronics.

[61]  P. He,et al.  Direct Electrochemical Detection of Oligonucleotide Hybridization on Poly(thionine) Film , 2005 .

[62]  Alfredo de la Escosura-Muñiz,et al.  DNA hybridization biosensors using polylysine modified SPCEs , 2007, Biosensors and Bioelectronics.

[63]  Jinsang Kim,et al.  Signal amplifying conjugated polymer-based solid-state DNA sensors , 2006 .

[64]  Marek Trojanowicz,et al.  Analytical applications of carbon nanotubes : a review , 2006 .

[65]  Elena Komarova,et al.  Direct electrochemical sensor for fast reagent-free DNA detection. , 2005, Biosensors & bioelectronics.

[66]  K. Watson,et al.  Transparent, flexible, conductive carbon nanotube coatings for electrostatic charge mitigation , 2005 .

[67]  Brigitte Grosgogeat,et al.  Cytotoxicity of polyethyleneimine (PEI), precursor base layer of polyelectrolyte multilayer films. , 2007, Biomaterials.

[68]  I-Ming Hsing,et al.  Micro‐ and Nano‐ Magnetic Particles for Applications in Biosensing , 2007 .

[69]  P. Bartlett,et al.  The application of conducting polymers in biosensors , 1993 .

[70]  G. Rivas,et al.  Dispersion of multi-wall carbon nanotubes in polyethylenimine: A new alternative for preparing electrochemical sensors , 2007 .

[71]  X. Cai,et al.  DNA biosensor for the detection of hydrazines. , 1996, Analytical chemistry.

[72]  J. Z. Hilt,et al.  Configurational biomimesis in drug delivery: molecular imprinting of biologically significant molecules. , 2004, Advanced drug delivery reviews.

[73]  J. Rusling,et al.  Studies of DNA Damage Inhibition by Dietary Antioxidants Using Metallopolyion/DNA Sensors , 2006 .

[74]  G. S. Wilson,et al.  Electrochemical biosensors: recommended definitions and classification. , 2001, Biosensors & bioelectronics.

[75]  J. M. Madurro,et al.  Immobilization of purine bases on a poly-4-aminophenol matrix , 2007 .

[76]  L. Blum,et al.  DNA biosensors and microarrays. , 2008, Chemical reviews.

[77]  G. Rivas,et al.  Immobilization of DNA on glassy carbon electrodes for the development of affinity biosensors. , 2003, Biosensors & bioelectronics.

[78]  Bansi D Malhotra,et al.  Prospects of conducting polymers in biosensors. , 2006, Analytica chimica acta.

[79]  J. Desbrières,et al.  Influence of acetic acid concentration on the solubilization of chitosan , 1999 .

[80]  E. Paleček,et al.  From polarography of DNA to microanalysis with nucleic acid-modified electrodes , 1996 .

[81]  Alan P. Morrison,et al.  Transport of ions and biomolecules through single asymmetric nanopores in polymer films , 2005 .

[82]  Zhu Chang,et al.  Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization , 2006 .

[83]  Lei Su,et al.  Electrochemistry and Electroanalytical Applications of Carbon Nanotubes: A Review , 2005, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[84]  C. Friedrich,et al.  Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene , 2004 .

[85]  Wisniewski,et al.  Methods for reducing biosensor membrane biofouling. , 2000, Colloids and surfaces. B, Biointerfaces.

[86]  L. Samuelson,et al.  Manipulating DNA Conformation Using Intertwined Conducting Polymer Chains , 2001 .

[87]  F. Marken,et al.  Simple Cast-Deposited Multi-Walled Carbon Nanotube/Nafion™ Thin Film Electrodes for Electrochemical Stripping Analysis , 2005 .

[88]  Richard A. Vaia,et al.  Nanocomposites: issues at the interface , 2004 .

[89]  Leon L. Shaw,et al.  On the improved properties of injection-molded, carbon nanotube-filled PET/PVDF blends , 2004 .

[90]  G. S. Wilson,et al.  Electrochemical biosensors: Recommended definitions and classification (Technical Report) , 1999 .

[91]  K. Luk,et al.  An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes. , 2005, Biomaterials.

[92]  D. Leech,et al.  Redox polymer and probe DNA tethered to gold electrodes for enzyme-amplified amperometric detection of DNA hybridization. , 2006, Analytical chemistry.

[93]  Minghui Yang,et al.  Electrical detection of deoxyribonucleic acid hybridization based on carbon-nanotubes/nano zirconium dioxide/chitosan-modified electrodes. , 2007, Analytica chimica acta.