γ-Glutamyl transpeptidase has a role in the persistent colonization of the avian gut by Campylobacter jejuni

[1]  L. Du,et al.  Unique Features of a Highly Pathogenic Campylobacter jejuni Strain , 2007, Infection and Immunity.

[2]  L. Du,et al.  Unique Features of a Highly Pathogenic Campylobacter jejuni Strain , 2006, Infection and Immunity.

[3]  A. McEwan,et al.  Azurin of Pathogenic Neisseria spp. Is Involved in Defense against Hydrogen Peroxide and Survival within Cervical Epithelial Cells , 2005, Infection and Immunity.

[4]  T. E. Hickey,et al.  Intracellular Survival of Campylobacter jejuni in Human Monocytic Cells and Induction of Apoptotic Death by Cytholethal Distending Toxin , 2005, Infection and Immunity.

[5]  A. Stintzi,et al.  Genomic Diversity in Campylobacter jejuni: Identification of C. jejuni 81-176-Specific Genes , 2005, Journal of Clinical Microbiology.

[6]  R. Panciera,et al.  Use of Genome-Wide Expression Profiling and Mutagenesis To Study the Intestinal Lifestyle of Campylobacter jejuni , 2005, Infection and Immunity.

[7]  S. Falkow,et al.  The Genome-Sequenced Variant of Campylobacter jejuni NCTC 11168 and the Original Clonal Clinical Isolate Differ Markedly in Colonization, Gene Expression, and Virulence-Associated Phenotypes , 2004 .

[8]  B. Ho,et al.  Prominent role of γ -glutamyl-transpeptidase on the growth of Helicobacter pylori , 2004 .

[9]  A. Stintzi,et al.  Identification of Campylobacter jejuni ATCC 43431-Specific Genes by Whole Microbial Genome Comparisons , 2004, Journal of bacteriology.

[10]  A. Stintzi,et al.  Iron Acquisition and Regulation in Campylobacter jejuni , 2004, Journal of bacteriology.

[11]  Eduardo N. Taboada,et al.  Genome-wide Expression Analyses of Campylobacter jejuni NCTC11168 Reveals Coordinate Regulation of Motility and Virulence by flhA*[boxs] , 2004, Journal of Biological Chemistry.

[12]  M. Romano,et al.  Helicobacter pyloriγ‐glutamyltranspeptidase upregulates COX‐2 and EGF‐related peptide expression in human gastric cells , 2004, Cellular microbiology.

[13]  S. Falkow,et al.  The Genome-Sequenced Variant of Campylobacter jejuni NCTC 11168 and the Original Clonal Clinical Isolate Differ Markedly in Colonization, Gene Expression, and Virulence-Associated Phenotypes , 2004, Journal of bacteriology.

[14]  Haruo Watanabe,et al.  Necessity of Meningococcal γ-Glutamyl Aminopeptidase for Neisseria meningitidis Growth in Rat Cerebrospinal Fluid (CSF) and CSF-Like Medium , 2004, Journal of bacteriology.

[15]  J. V. Van Beeumen,et al.  Glutathione and Catalase Provide Overlapping Defenses for Protection against Respiration-Generated Hydrogen Peroxide in Haemophilus influenzae , 2003, Journal of bacteriology.

[16]  D. Newell,et al.  Sources of Campylobacter Colonization in Broiler Chickens , 2003, Applied and Environmental Microbiology.

[17]  Hanne Rosenquist,et al.  Quantitative risk assessment of human campylobacteriosis associated with thermophilic Campylobacter species in chickens. , 2003, International journal of food microbiology.

[18]  V. Korolik,et al.  Colonisation phenotype and colonisation potential differences in Campylobacter jejuni strains in chickens before and after passage in vivo. , 2003, Veterinary microbiology.

[19]  D. Cappelli,et al.  Role for Recombinant γ-Glutamyltransferase from Treponema denticola in Glutathione Metabolism , 2003, Infection and Immunity.

[20]  K. Yokoyama,et al.  A novel apoptosis‐inducing protein from Helicobacter pylori , 2003, Molecular microbiology.

[21]  T. Wassenaar,et al.  Identification of genetic differences between two Campylobacter jejuni strains with different colonization potentials. , 2002, Microbiology.

[22]  D. Acheson,et al.  Identification of Motility and Autoagglutination Campylobacter jejuni Mutants by Random Transposon Mutagenesis , 2002, Infection and Immunity.

[23]  D. Cochran,et al.  Role of Glutathione Metabolism of Treponema denticola in Bacterial Growth and Virulence Expression , 2002, Infection and Immunity.

[24]  G. Smirnova,et al.  Role of Glutathione in the Response of Escherichia coli to Osmotic Stress , 2001, Biochemistry (Moscow).

[25]  E. Nielsen,et al.  Comparison of Genotypes and Serotypes of Campylobacter jejuni Isolated from Danish Wild Mammals and Birds and from Broiler Flocks and Humans , 2001, Applied and Environmental Microbiology.

[26]  P. Youngman,et al.  γ-Glutamyltransferase Is a Helicobacter pylori Virulence Factor but Is Not Essential for Colonization , 2001, Infection and Immunity.

[27]  D. Newell Animal models of Campylobacter jejuni colonization and disease and the lessons to be learned from similar Helicobacter pylori models , 2001, Symposium series.

[28]  M. Maiden,et al.  Multilocus Sequence Typing System forCampylobacter jejuni , 2001, Journal of Clinical Microbiology.

[29]  C. Fernandes,et al.  Mitochondrial glutathione and oxidative stress: implications for pulmonary oxygen toxicity in premature infants. , 2000, Molecular genetics and metabolism.

[30]  B. Barrell,et al.  The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences , 2000, Nature.

[31]  M. Blaser,et al.  Pathophysiology of Campylobacter jejuni infections of humans. , 1999, Microbes and infection.

[32]  D. Kopecko,et al.  Campylobacter jejuni 81-176 Associates with Microtubules and Dynein during Invasion of Human Intestinal Cells , 1999, Infection and Immunity.

[33]  C. Szymanski,et al.  Evidence for a system of general protein glycosylation in Campylobacter jejuni , 1999, Molecular microbiology.

[34]  H R Smith,et al.  A study of infectious intestinal disease in England: microbiological findings in cases and controls. , 1999, Communicable disease and public health.

[35]  R. Meinersmann,et al.  Apoptotic Effect of Outer-Membrane Proteins from Campylobacter jejuni on Chicken Lymphocytes , 1999, Current Microbiology.

[36]  A. Labigne,et al.  Essential role of Helicobacter pyloriγ‐glutamyltranspeptidase for the colonization of the gastric mucosa of mice , 1999, Molecular microbiology.

[37]  K. Jones,et al.  High frequency of metronidazole resistance among strains of Campylobacter jejuni isolated from birds , 1998, Letters in applied microbiology.

[38]  P. Mirabito,et al.  Campylobacter jejuni Cytolethal Distending Toxin Causes a G2-Phase Cell Cycle Block , 1998, Infection and Immunity.

[39]  F. Fang Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. , 1997, The Journal of clinical investigation.

[40]  M. Strauch,et al.  Identification, sequence, and expression of the gene encoding gamma-glutamyltranspeptidase in Bacillus subtilis , 1996, Journal of bacteriology.

[41]  Y. Ikeda,et al.  Involvement of Ser-451 and Ser-452 in the Catalysis of Human γ-Glutamyl Transpeptidase (*) , 1995, The Journal of Biological Chemistry.

[42]  Y. Inoue,et al.  Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae , 1995, FEBS letters.

[43]  H. Kumagai,et al.  Escherichia coli K-12 can utilize an exogenous gamma-glutamyl peptide as an amino acid source, for which gamma-glutamyltranspeptidase is essential , 1993, Journal of bacteriology.

[44]  H. Forman,et al.  Extracellular glutathione and gamma-glutamyl transpeptidase prevent H2O2-induced injury by 2,3-dimethoxy-1,4-naphthoquinone. , 1993, Free radical biology & medicine.

[45]  T. Wassenaar,et al.  Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. , 1993, Journal of general microbiology.

[46]  G. Screaton,et al.  Direct sequencing of single primer PCR products: a rapid method to achieve short chromosomal walks. , 1993, Nucleic acids research.

[47]  M. Niwa,et al.  Molecular Cloning of the γ‐Glutamyltranspeptidase Gene from a Pseudomonas Strain , 1993 .

[48]  A. Meister On the antioxidant effects of ascorbic acid and glutathione. , 1992, Biochemical pharmacology.

[49]  T. Wassenaar,et al.  Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. , 1991, The EMBO journal.

[50]  Hideyuki Suzuki,et al.  DNA sequence of the Escherichia coli K-12 gamma-glutamyltranspeptidase gene, ggt , 1989, Journal of bacteriology.

[51]  H. Goossens,et al.  Semisolid blood-free selective-motility medium for the isolation of campylobacters from stool specimens , 1989, Journal of clinical microbiology.

[52]  M. Osterholm,et al.  A point-source outbreak of campylobacteriosis associated with consumption of raw milk. , 1985, The Journal of infectious diseases.

[53]  H. Kumagai,et al.  Leakage of glutathione from bacterial cells caused by inhibition of gamma-glutamyltranspeptidase , 1984, Applied and environmental microbiology.

[54]  J. White,et al.  WATER-BORNE OUTBREAK OF CAMPYLOBACTER GASTROENTERITIS , 1983, The Lancet.

[55]  J. Riou,et al.  [gamma-Glutamyl-transferase activity in the family "Neisseriaceae" (author's transl)]. , 1982, Annals of Microbiology.

[56]  A. Meister,et al.  γ-Glutamyl transpeptidase: catalytic, structural and functional aspects , 1981, Molecular and Cellular Biochemistry.

[57]  M. B. Skirrow,et al.  Campylobacter enteritis: a "new" disease. , 1977, British medical journal.

[58]  Jacques Lb Letter: Standardisation of heparin for clinical use. , 1975 .

[59]  B. Ho,et al.  Prominent role of gamma-glutamyl-transpeptidase on the growth of Helicobacter pylori. , 2004, World Journal of Gastroenterology.

[60]  D. Cappelli,et al.  Role for recombinant gamma-glutamyltransferase from Treponema denticola in glutathione metabolism. , 2003, Infection and Immunity.

[61]  J. Wagenaar,et al.  Poultry infections and their control at the farm level , 2000 .

[62]  Robert V. Tauxe,et al.  Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations , 2000 .

[63]  P. Sachadyn,et al.  Thermal profile with alternately raised and lowered annealing temperature improves the PCR amplification using highly degenerate primers. , 1998, Acta biochimica Polonica.

[64]  M. Niwa,et al.  Molecular cloning of the gamma-glutamyltranspeptidase gene from a Pseudomonas strain. , 1993, Biotechnology progress.