Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems

Solar and wind energy systems are omnipresent, freely available, environmental friendly, and they are considered as promising power generating sources due to their availability and topological advantages for local power generations. Hybrid solar-wind energy systems, uses two renewable energy sources, allow improving the system efficiency and power reliability and reduce the energy storage requirements for stand-alone applications. The hybrid solar-wind systems are becoming popular in remote area power generation applications due to advancements in renewable energy technologies and substantial rise in prices of petroleum products. This paper is to review the current state of the simulation, optimization and control technologies for the stand-alone hybrid solar-wind energy systems with battery storage. It is found that continued research and development effort in this area is still needed for improving the systems' performance, establishing techniques for accurately predicting their output and reliably integrating them with other renewable or conventional power generation sources.

[1]  Hongxing Yang,et al.  Study of typical meteorological years and their effect on building energy and renewable energy simulations , 2004 .

[2]  R. Dufo López,et al.  MULTI-OBJECTIVE DESIGN OF PV–WIND–DIESEL–HYDROGEN–BATTERY SYSTEMS , 2008 .

[3]  A. Louche,et al.  Technical and economic assessment of hybrid photovoltaic/wind system with battery storage in Corsica island , 2008 .

[4]  R. E. Schafer,et al.  Improved goodness-of-fit tests , 1971 .

[5]  A. Chaurey,et al.  Battery storage for PV power systems: An overview , 1992 .

[6]  Lena Neij,et al.  Cost dynamics of wind power , 1999 .

[7]  Alfons Vervaet,et al.  Lead-acid battery model for the derivation of Peukert’s law , 1999 .

[8]  F. Valenciaga,et al.  Supervisor control for a stand-alone hybrid generation system using wind and photovoltaic energy , 2005, IEEE Transactions on Energy Conversion.

[9]  B. J. Brinkworth,et al.  ‘ARES’—A refined simulation program for the sizing and optimisation of autonomous hybrid energy systems , 1997 .

[10]  Izumi Ushiyama,et al.  A demonstrative study for the wind and solar hybrid power system , 1996 .

[11]  F. Li,et al.  A comparison of genetic algorithms with conventional techniques on a spectrum of power economic dispatch problems , 1998 .

[12]  Ziyad M. Salameh,et al.  Sizing of a stand-alone hybrid wind-photovoltaic system using a three-event probability density approximation , 1996 .

[13]  Ralph E. White,et al.  A Mathematical Model of a Lead‐Acid Cell Discharge, Rest, and Charge , 1987 .

[14]  D. Lew,et al.  Alternatives to coal and candles: wind power in China , 2000 .

[15]  M. H. Shwehdi,et al.  Probabilistic assessment of photovoltaic (PV) generation systems , 2002 .

[16]  L. Goel,et al.  A study on optimal sizing of stand-alone photovoltaic stations , 1998 .

[17]  A. Louche,et al.  DESIGN OF HYBRID-PHOTOVOLTAIC POWER GENERATOR, WITH OPTIMIZATION OF ENERGY MANAGEMENT , 1999 .

[18]  M. Alhusein,et al.  A COMBINED SYSTEM OF RENEWABLE ENERGY FOR GRID-CONNECTED ADVANCED COMMUNITIES , 1992 .

[19]  A. Louche,et al.  PV-hybrid power systems sizing incorporating battery storage: an analysis via simulation calculations , 2000 .

[20]  A. Louche,et al.  Autonomous photovoltaic systems: Influences of some parameters on the sizing: Simulation timestep, input and output power profile , 1996 .

[21]  Sandip Deshmukh,et al.  Modeling of hybrid renewable energy systems , 2008 .

[22]  Brock J. LaMeres,et al.  An approach to evaluate the general performance of stand-alone wind/photovoltaic generating systems , 2000 .

[23]  J.Y. Lim,et al.  A study on the stand-alone operating or photovoltaic/wind power hybrid generation system , 2004, 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551).

[24]  Sung Chul Kim,et al.  Analysis of the discharge performance of a flooded lead/acid cell using mathematical modelling , 1999 .

[25]  Saifur Rahman,et al.  Unit sizing and control of hybrid wind-solar power systems , 1997 .

[26]  Salvina Gagliano,et al.  Hybrid solar/wind power system probabilistic modelling for long-term performance assessment , 2006 .

[27]  Arif İleri,et al.  Typical weather data of main Turkish cities for energy applications , 2000 .

[28]  J. Duffie,et al.  A methodology for the synthesis of hourly weather data , 1991 .

[29]  S. M. Shaahid,et al.  Promoting applications of hybrid ( wind+photovoltaic+diesel+battery ) power systems in hot regions , 2004 .

[30]  B. J. Brinkworth,et al.  Sizing and techno-economical optimization for hybrid solar photovoltaic/wind power systems with battery storage , 1997 .

[31]  M.E.H. Benbouzid,et al.  Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems , 2008, 2007 IEEE International Electric Machines & Drives Conference.

[32]  J. M. Gordon,et al.  Optimal sizing of stand-alone photovoltaic solar power systems , 1987 .

[33]  P. Ekdunge,et al.  The discharge behaviour of the porous lead electrode in the lead-acid battery. I. Experimental investigations , 1989 .

[34]  R. Chedid,et al.  Adaptive fuzzy control for wind-diesel weak power systems , 2000 .

[35]  Miguel Ángel Egido,et al.  The sizing of stand alone PV-system: A review and a proposed new method , 1992 .

[36]  Sanford Klein,et al.  A method for estimating the performance of photovoltaic systems , 1982 .

[37]  Karim S. Karim,et al.  Low light conditions modelling for building integrated photovoltaic (BIPV) systems , 2004 .

[38]  A. G Bhave Hybrid solar–wind domestic power generating system—a case study , 1999 .

[39]  Kostas Kalaitzakis,et al.  Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms , 2006 .

[40]  M. T. Elhagry,et al.  Hybrid PV/fuel cell system design and simulation , 2002 .

[41]  Wei Zhou,et al.  A novel model for photovoltaic array performance prediction , 2007 .

[42]  A. Cuevas,et al.  Generalized Analysis of the Illumination Intensity vs . Open-Circuit Voltage Decay of Solar Cells , 2003 .

[43]  Mark Kerr,et al.  Generalized analysis of the illumination intensity vs. open-circuit voltage of solar cells , 2004 .

[44]  Athanasios Sfetsos,et al.  A comparison of various forecasting techniques applied to mean hourly wind speed time series , 2000 .

[45]  J.P. Cun,et al.  The experience of a UPS company in advanced battery monitoring , 1996, Proceedings of Intelec'96 - International Telecommunications Energy Conference.

[46]  Ziyad M. Salameh,et al.  Optimum photovoltaic array size for a hybrid wind/PV system , 1994 .

[47]  K. Rosen,et al.  WIND ENERGY POTENTIAL OF COASTAL ERITREA: AN ANALYSIS OF SPARSE WIND DATA , 1999 .

[48]  G. C. Seeling-Hochmuth A combined optimisation concet for the design and operation strategy of hybrid-PV energy systems , 1997 .

[49]  Peter Tavner,et al.  Reliability analysis for wind turbines , 2007 .

[50]  Wei Zhou,et al.  Battery behavior prediction and battery working states analysis of a hybrid solar-wind power generation system , 2008 .

[51]  Louis L. Bucciarelli,et al.  Estimating loss-of-power probabilities of stand-alone photovoltaic solar energy systems , 1984 .

[52]  M. A. Elhadidy,et al.  Performance evaluation of hybrid (wind/solar/diesel) power systems , 2002 .

[53]  V. Agarwal,et al.  Utility-Interactive Hybrid Distributed Generation Scheme With Compensation Feature , 2007, IEEE Transactions on Energy Conversion.

[54]  Soteris A. Kalogirou,et al.  Artificial intelligence techniques for sizing photovoltaic systems: A review , 2009 .

[55]  F.M.A. Ghali,et al.  Simulation and analysis of hybrid systems using probabilistic techniques , 1997, Proceedings of Power Conversion Conference - PCC '97.

[56]  T. Yamashita,et al.  A function of the battery capacity evaluation in telecommunications power systems , 1997, Proceedings of Power and Energy Systems in Converging Markets.

[57]  Ali Naci Celik,et al.  A simplified model for estimating the monthly performance of autonomous wind energy systems with battery storage , 2003 .

[58]  Giri Venkataramanan,et al.  Generation unit sizing and cost analysis for stand-alone wind, photovoltaic, and hybrid wind/PV systems , 1998 .

[59]  Raya Mertens,et al.  Physics, technology, and use of photovoltaics , 1986 .

[60]  M. M. Abdel Wahab,et al.  Extrapolation of solar irradiation measurements: Case study over Egypt , 1998 .

[61]  Wei Zhou,et al.  OPTIMAL SIZING METHOD FOR STAND-ALONE HYBRID SOLAR–WIND SYSTEM WITH LPSP TECHNOLOGY BY USING GENETIC ALGORITHM , 2008 .

[62]  S. M. Shaahid,et al.  Parametric study of hybrid (wind + solar + diesel) power generating systems , 2000 .

[63]  Rodolfo Dufo-López,et al.  Design and control strategies of PV-Diesel systems using genetic algorithms , 2005 .

[64]  F. Giraud,et al.  Steady-state performance of a grid-connected rooftop hybrid wind-photovoltaic power system with battery storage , 2001, 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194).

[65]  T. Funabashi,et al.  Optimum configuration for renewable generating systems in residence using genetic algorithm , 2006, IEEE Transactions on Energy Conversion.

[66]  N. Lymberopoulos,et al.  Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems , 2007 .

[67]  R. Chedid,et al.  Probabilistic performance assessment of autonomous solar-wind energy conversion systems , 1999 .

[68]  T. A. Reddy,et al.  Time series analysis of hourly global horizontal solar radiation , 1988 .

[69]  Ignacio J. Ramirez-Rosado,et al.  Genetic algorithms applied to the design of large power distribution systems , 1998 .

[70]  Wei Zhou,et al.  A novel optimization sizing model for hybrid solar-wind power generation system , 2007 .

[71]  A. M. Al-Ashwal,et al.  Proportion assessment of combined PV-wind generating systems , 1997 .

[72]  Eduard Muljadi,et al.  Pitch-controlled variable-speed wind turbine generation , 1999, Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370).

[73]  Ziyad M. Salameh,et al.  Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system , 1996 .

[74]  Yukiharu Uraoka,et al.  Field-test analysis of PV system output characteristics focusing on module temperature , 2003 .

[75]  Christian Langer,et al.  A method for the identification of configurations of PV/wind hybrid systems for the reliable supply of small loads , 1996 .

[76]  Joe Huang,et al.  DEVELOPMENT OF TYPICAL YEAR WEATHER DATA FOR CHINESE LOCATIONS , 2002 .

[77]  T. A. Reddy,et al.  Time series analysis of daily horizontal solar radiation , 1988 .

[78]  Zhou Wei,et al.  Optimal design and techno-economic analysis of a hybrid solar–wind power generation system , 2009 .

[79]  R. Chedid,et al.  Probabilistic performance assessment of wind energy conversion systems , 1999 .

[80]  Andreas Jossen,et al.  Methods for state-of-charge determination and their applications , 2001 .

[81]  Abdel-Karim Daud,et al.  Design of isolated hybrid systems minimizing costs and pollutant emissions , 2012 .

[82]  Lin Lu,et al.  Investigation on wind power potential on Hong Kong islands—an analysis of wind power and wind turbine characteristics , 2002 .

[83]  Ali Naci Celik,et al.  Techno-economic analysis of autonomous PV-wind hybrid energy systems using different sizing methods , 2003 .

[84]  Xavier Pelet,et al.  Multiobjective optimisation of integrated energy systems for remote communities considering economics and CO2 emissions , 2005 .

[85]  Luiz Carlos Guedes Valente,et al.  Economic analysis of a diesel/photovoltaic hybrid system for decentralized power generation in northern Brazil , 1998 .

[86]  P. Siarry,et al.  Multiobjective Optimization: Principles and Case Studies , 2004 .

[87]  G. C. Bakos,et al.  Technoeconomic assessment of a hybrid solar/wind installation for electrical energy saving , 2003 .

[88]  A. Louche,et al.  Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions , 2008 .

[89]  Mervyn Smyth,et al.  Long-term validated simulation of a building integrated photovoltaic system , 2005 .

[90]  Lin Lu,et al.  Weather data and probability analysis of hybrid photovoltaic–wind power generation systems in Hong Kong , 2003 .

[91]  Ali Naci Celik,et al.  Optimisation and techno-economic analysis of autonomous photovoltaic–wind hybrid energy systems in comparison to single photovoltaic and wind systems , 2002 .

[92]  Ralph E. White,et al.  The Effects of Separator Design on the Discharge Performance of a Starved Lead‐Acid Cell , 1990 .

[93]  E. Radziemska,et al.  Thermally affected parameters of the current–voltage characteristics of silicon photocell , 2002 .

[94]  Tom E. Baldock,et al.  Feasibility analysis of stand-alone renewable energy supply options for a large hotel , 2008 .

[95]  Louis L. Bucciarelli The effect of day-to-day correlation in solar radiation on the probability of loss-of-power in a stand-alone photovoltaic energy system , 1986 .

[96]  Chris Underwood,et al.  A modelling method for building-integrated photovoltaic power supply , 2002 .

[97]  Mohammad S. Alam,et al.  Dynamic modeling, design and simulation of a wind/fuel cell/ultra-capacitor-based hybrid power generation system , 2006 .

[98]  William A. Beckman,et al.  Assessment of the accuracy of generated meteorological data for use in solar energy simulation studies , 1994 .

[99]  Soteris A. Kalogirou,et al.  Optimization of solar systems using artificial neural-networks and genetic algorithms , 2004 .

[100]  D. Bernardi,et al.  A Mathematical Model of the Oxygen‐Recombination Lead‐Acid Cell , 1995 .

[101]  W. Beckman,et al.  A simplified method for estimating the monthly-average performance of photovoltaic systems , 1981 .

[102]  R. J. Kaye A new approach to optimal sizing of components in stand-alone photovoltaic power systems , 1994, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC).

[103]  M. J. Khan,et al.  Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland , 2005 .

[104]  T. Markvart Sizing of hybrid photovoltaic-wind energy systems , 1996 .

[105]  R. Chedid,et al.  Adaptive fuzzy control for wind-diesel weak power systems , 2000, 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.00CH37077).

[106]  G. H. Riahy,et al.  Introducing a new method for optimal sizing of a hybrid (wind/PV/battery) system considering instantaneous wind speed variations , 2008 .