Colloidal quantum dot materials for infrared optoelectronics

Colloidal quantum dots (CQDs) are an attractive material for optoelectronic applications because they combine flexible, low-cost solution-phase synthesis and processing with the potential for novel functionality arising from their nanostructure. Specifically, the bandgap of films composed of arrays of CQDs can be tuned via the quantum confinement effect for tailored spectral utilization. PbS-based CQDs can be tuned throughout the near and mid-infrared wavelengths and are a promising materials system for photovoltaic devices that harvest non-visible solar radiation. The performance of CQD solar cells is currently limited by an absorption-extraction compromise, whereby photon absorption lengths in the near infrared spectral regime exceed minority carrier diffusion lengths in the bulk films. Several light trapping strategies for overcoming this compromise and increasing the efficiency of infrared energy harvesting will be reviewed. A thin-film interference technique for creating multi-colored and transparent solar cells will be presented, and a discussion of designing plasmonic nanomaterials based on earth-abundant materials for integration into CQD solar cells is developed. The results indicate that it should be possible to achieve high absorption and color-tunability in a scalable nanomaterials system.

[1]  Xiaohua Huang,et al.  Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. , 2008, Accounts of chemical research.

[2]  Huijie Wang,et al.  Engineered fluorescence of quantum dots via plasmonic nanostructures , 2014 .

[3]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[4]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[5]  Oleksandr Voznyy,et al.  Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime , 2014, Nature Communications.

[6]  Hye-Moon Lee,et al.  Preparation of Aluminum-Oleic Acid Nano-Composite for Application to Electrode for Si Solar Cells , 2011 .

[7]  Larissa Levina,et al.  Quantum junction solar cells. , 2012, Nano letters.

[8]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[9]  Peter Nordlander,et al.  Aluminum for plasmonics. , 2014, ACS nano.

[10]  Tania Lasanta,et al.  Plasmonic Schottky Nanojunctions for Tailoring the Photogeneration Profile in Thin Film Solar Cells , 2014 .

[11]  Edward H. Sargent,et al.  Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. , 2008, Nano letters.

[12]  Moungi G. Bawendi,et al.  Improved performance and stability in quantum dot solar cells through band alignment engineering , 2014, Nature materials.

[13]  Takashi Mukai,et al.  Surface-plasmon-enhanced light emitters based on InGaN quantum wells , 2004, Nature materials.

[14]  Edward H. Sargent Colloidal quantum dot solar cells , 2012 .

[15]  Matt Law,et al.  Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. , 2008, ACS nano.

[16]  G. Konstantatos,et al.  Hybrid graphene-quantum dot phototransistors with ultrahigh gain. , 2011, Nature nanotechnology.

[17]  Aram Amassian,et al.  Efficient Spray‐Coated Colloidal Quantum Dot Solar Cells , 2015, Advanced materials.

[18]  E. Sargent,et al.  Colloidal Quantum-Dot Photodetectors Exploiting Multiexciton Generation , 2009, Science.

[19]  Martin A. Green,et al.  Harnessing plasmonics for solar cells , 2012, Nature Photonics.

[20]  Tania Lasanta,et al.  Surface plasmon polariton couplers for light trapping in thin-film absorbers and their application to colloidal quantum dot optoelectronics , 2014 .

[21]  J. Luther,et al.  Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell , 2011, Science.

[22]  Jiang Tang,et al.  Infrared Colloidal Quantum Dots for Photovoltaics: Fundamentals and Recent Progress , 2011, Advanced materials.

[23]  O. Voznyy,et al.  Directly Deposited Quantum Dot Solids Using a Colloidally Stable Nanoparticle Ink , 2013, Advanced materials.

[24]  Edward H. Sargent,et al.  Sensitive solution-processed visible-wavelength photodetectors , 2007 .

[25]  Ratan Debnath,et al.  Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics , 2011, Advanced materials.

[26]  Edward H. Sargent,et al.  Broadband solar absorption enhancement via periodic nanostructuring of electrodes , 2013, Scientific Reports.

[27]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[28]  M. Bawendi,et al.  Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals , 1998 .

[29]  Edward H. Sargent,et al.  Schottky barriers to colloidal quantum dot films , 2007 .

[30]  Jong-Ryul Jeong,et al.  Lead sulfide nanocrystal quantum dot solar cells with trenched ZnO fabricated via nanoimprinting. , 2013, ACS applied materials & interfaces.

[31]  Ke Zhao,et al.  Near infrared absorption of CdSe(x)Te(1-x) alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability. , 2013, ACS nano.

[32]  C. Aikens,et al.  Diameter Dependence of the Excitation Spectra of Silver and Gold Nanorods , 2013 .

[33]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[34]  V. Bulović,et al.  Emergence of colloidal quantum-dot light-emitting technologies , 2012, Nature Photonics.

[35]  Ratan Debnath,et al.  Depleted-heterojunction colloidal quantum dot solar cells. , 2010, ACS nano.

[36]  Geethika K. Liyanage,et al.  Plasmonic nanocrystal solar cells utilizing strongly confined radiation. , 2014, ACS nano.

[37]  Seyed Milad Mahpeykar,et al.  Resonance-induced absorption enhancement in colloidal quantum dot solar cells using nanostructured electrodes. , 2014, Optics express.

[38]  Larissa Levina,et al.  Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency. , 2008, ACS nano.

[39]  Eiji Ohtani,et al.  Electroluminescence from single monolayers of nanocrystals in molecular organic devices , 2022 .

[40]  Illan J. Kramer,et al.  Solar cells using quantum funnels. , 2011, Nano letters.

[41]  Mark W. Knight,et al.  Aluminum plasmonic nanoantennas. , 2012, Nano letters.

[42]  Aram Amassian,et al.  Hybrid passivated colloidal quantum dot solids. , 2012, Nature nanotechnology.

[43]  Luis M Liz-Marzán,et al.  Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[44]  Edward H. Sargent,et al.  Jointly tuned plasmonic-excitonic photovoltaics using nanoshells. , 2013, Nano letters.

[45]  Louis E. Brus,et al.  The Quantum Mechanics of Larger Semiconductor Clusters ("Quantum Dots") , 1990 .

[46]  Andrea Fratalocchi,et al.  Colloidal quantum dot solar cells exploiting hierarchical structuring. , 2015, Nano letters.

[47]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[48]  Edward H. Sargent,et al.  Folded-Light-Path Colloidal Quantum Dot Solar Cells , 2013, Scientific Reports.

[49]  Stephen K. Gray,et al.  Theory and modeling of light interactions with metallic nanostructures , 2007 .

[50]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[51]  I. Moreels,et al.  Size-dependent optical properties of colloidal PbS quantum dots. , 2009, ACS nano.

[52]  Louis E. Brus,et al.  Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum , 1988 .

[53]  Eric T. Hoke,et al.  Accounting for Interference, Scattering, and Electrode Absorption to Make Accurate Internal Quantum Efficiency Measurements in Organic and Other Thin Solar Cells , 2010, Advanced materials.

[54]  S. Haque,et al.  Charge photogeneration in hybrid solar cells: a comparison between quantum dots and in situ grown CdS. , 2012, Nanoscale.

[55]  P. Guyot-Sionnest,et al.  Mid-infrared HgTe colloidal quantum dot photodetectors , 2011 .

[56]  Edward H. Sargent,et al.  Self‐Assembled, Nanowire Network Electrodes for Depleted Bulk Heterojunction Solar Cells , 2013, Advanced materials.