An MsFEM approach enriched using Legendre polynomials

We consider a variant of the conventional MsFEM approach with enrichments based on Legendre polynomials, both in the bulk of mesh elements and on their interfaces. A convergence analysis of the approach is presented. Residue-type a posteriori error estimates are also established. Numerical experiments show a significant reduction in the error at a limited additional off-line cost. In particular, the approach developed here is less prone to resonance errors in the regime where the coarse mesh size H is of the order of the small scale ε of the oscillations.

[1]  U. Hetmaniuk,et al.  A SPECIAL FINITE ELEMENT METHOD BASED ON COMPONENT MODE SYNTHESIS , 2010 .

[2]  Kai Gao,et al.  A high-order multiscale finite-element method for time-domain acoustic-wave modeling , 2018, J. Comput. Phys..

[3]  Giuseppe Savaré,et al.  Regularity Results for Elliptic Equations in Lipschitz Domains , 1998 .

[4]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[5]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[6]  A. Klawonn,et al.  ERROR ESTIMATES FOR A TWO-DIMENSIONAL SPECIAL FINITE ELEMENT METHOD BASED ON COMPONENT MODE SYNTHESIS , 2014 .

[7]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[8]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[9]  Richard B. Lehoucq,et al.  An Automated Multilevel Substructuring Method for Eigenspace Computation in Linear Elastodynamics , 2004, SIAM J. Sci. Comput..

[10]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[11]  Jens Markus Melenk,et al.  hp-Interpolation of Nonsmooth Functions and an Application to hp-A posteriori Error Estimation , 2005, SIAM J. Numer. Anal..

[12]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[13]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[14]  M. Gander,et al.  Analysis of a New Harmonically Enriched Multiscale Coarse Space for Domain Decomposition Methods , 2015, 1512.05285.

[15]  Qingqing Feng Development of a multiscale finite element method for incompressible flows in heterogeneous media. (Développement d'une méthode d'éléments finis multi-échelles pour les écoulements incompressibles dans un milieu hétérogène) , 2019 .

[16]  Christine Bernardi,et al.  Discr'etisations variationnelles de probl`emes aux limites elliptiques , 2004 .

[17]  Alfio Quarteroni,et al.  The Spectral Projection Decomposition Method for Elliptic Equations in Two Dimensions , 1997 .

[18]  Martin J. Gander,et al.  SHEM: An Optimal Coarse Space for RAS and Its Multiscale Approximation , 2017 .

[19]  F. Bourquin,et al.  Component mode synthesis and eigenvalues of second order operators : discretization and algorithm , 1992 .

[20]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[21]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[22]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[23]  R. Hiptmair,et al.  Boundary Element Methods , 2021, Oberwolfach Reports.

[24]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[25]  C. Carstensen,et al.  Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods , 2000 .

[26]  Daniel Peterseim,et al.  Localization of elliptic multiscale problems , 2011, Math. Comput..

[27]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[28]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[29]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .