Transport Map Accelerated Markov Chain Monte Carlo

We introduce a new framework for efficient sampling from complex probability distributions, using a combination of transport maps and the Metropolis--Hastings rule. The core idea is to use determin...

[1]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[2]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[3]  H. Knothe Contributions to the theory of convex bodies. , 1957 .

[4]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[5]  Herbert S. Wilf A Global Bisection Algorithm for Computing the Zeros of Polynomials in the Complex Plane , 1978, JACM.

[6]  I. Olkin,et al.  The distance between two random vectors with given dispersion matrices , 1982 .

[7]  Anne Lohrli Chapman and Hall , 1985 .

[8]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[9]  L. Caffarelli The regularity of mappings with a convex potential , 1992 .

[10]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[11]  R. McCann Existence and uniqueness of monotone measure-preserving maps , 1995 .

[12]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[13]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .

[14]  S. F. Jarner,et al.  Geometric ergodicity of Metropolis algorithms , 2000 .

[15]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[16]  A. Mira On Metropolis-Hastings algorithms with delayed rejection , 2001 .

[17]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[18]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[19]  Alexander Shapiro,et al.  The Sample Average Approximation Method for Stochastic Discrete Optimization , 2002, SIAM J. Optim..

[20]  C. Villani Topics in Optimal Transportation , 2003 .

[21]  J. Rosenthal,et al.  General state space Markov chains and MCMC algorithms , 2004, math/0404033.

[22]  P. Bernard,et al.  Optimal mass transportation and Mather theory , 2004, math/0412299.

[23]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[24]  Ulli Wolff Monte Carlo errors with less errors , 2004 .

[25]  A. Üstünel,et al.  Monge-Kantorovitch Measure Transportation and Monge-Ampère Equation on Wiener Space , 2004 .

[26]  Y. Atchadé An Adaptive Version for the Metropolis Adjusted Langevin Algorithm with a Truncated Drift , 2006 .

[27]  C. Andrieu,et al.  On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.

[28]  L. Rockwood Introduction to population ecology , 2006 .

[29]  J. Rosenthal,et al.  Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms , 2007, Journal of Applied Probability.

[30]  Tito Homem-de-Mello,et al.  On Rates of Convergence for Stochastic Optimization Problems Under Non--Independent and Identically Distributed Sampling , 2008, SIAM J. Optim..

[31]  C. Villani Optimal Transport: Old and New , 2008 .

[32]  Guillaume Carlier,et al.  From Knothe's Transport to Brenier's Map and a Continuation Method for Optimal Transport , 2008, SIAM J. Math. Anal..

[33]  Jeffrey S. Rosenthal,et al.  Markov Chain Monte Carlo Algorithms: Theory and Practice , 2009 .

[34]  J. Rosenthal,et al.  Department of , 1993 .

[35]  S. Rounds,et al.  Controls on biochemical oxygen demand in the upper Klamath River, Oregon , 2010 .

[36]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[37]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[38]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[39]  L. Pascale,et al.  The Monge problem in ${\mathbb R}^d$ , 2011 .

[40]  C. Geyer,et al.  Correction: Variable transformation to obtain geometric ergodicity in the random-walk Metropolis algorithm , 2012, 1302.6741.

[41]  James Martin,et al.  A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..

[42]  Youssef M. Marzouk,et al.  Bayesian inference with optimal maps , 2011, J. Comput. Phys..

[43]  Sebastian Reich,et al.  A Nonparametric Ensemble Transform Method for Bayesian Inference , 2012, SIAM J. Sci. Comput..

[44]  A. Vershik Long History of the Monge-Kantorovich Transportation Problem , 2013 .

[45]  L. Ambrosio,et al.  A User’s Guide to Optimal Transport , 2013 .

[46]  Nicolas Bonnotte,et al.  From Knothe's Rearrangement to Brenier's Optimal Transport Map , 2012, SIAM J. Math. Anal..

[47]  Heikki Haario,et al.  Randomize-Then-Optimize: A Method for Sampling from Posterior Distributions in Nonlinear Inverse Problems , 2014, SIAM J. Sci. Comput..

[48]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[49]  Matthew Parno,et al.  Transport maps for accelerated Bayesian computation , 2015 .