Transport Map Accelerated Markov Chain Monte Carlo
暂无分享,去创建一个
[1] M. Rosenblatt. Remarks on a Multivariate Transformation , 1952 .
[2] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[3] H. Knothe. Contributions to the theory of convex bodies. , 1957 .
[4] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[5] Herbert S. Wilf. A Global Bisection Algorithm for Computing the Zeros of Polynomials in the Complex Plane , 1978, JACM.
[6] I. Olkin,et al. The distance between two random vectors with given dispersion matrices , 1982 .
[7] Anne Lohrli. Chapman and Hall , 1985 .
[8] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[9] L. Caffarelli. The regularity of mappings with a convex potential , 1992 .
[10] Steven H. Strogatz,et al. Nonlinear Dynamics and Chaos , 2024 .
[11] R. McCann. Existence and uniqueness of monotone measure-preserving maps , 1995 .
[12] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[13] R. Tweedie,et al. Exponential convergence of Langevin distributions and their discrete approximations , 1996 .
[14] S. F. Jarner,et al. Geometric ergodicity of Metropolis algorithms , 2000 .
[15] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[16] A. Mira. On Metropolis-Hastings algorithms with delayed rejection , 2001 .
[17] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[18] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[19] Alexander Shapiro,et al. The Sample Average Approximation Method for Stochastic Discrete Optimization , 2002, SIAM J. Optim..
[20] C. Villani. Topics in Optimal Transportation , 2003 .
[21] J. Rosenthal,et al. General state space Markov chains and MCMC algorithms , 2004, math/0404033.
[22] P. Bernard,et al. Optimal mass transportation and Mather theory , 2004, math/0412299.
[23] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[24] Ulli Wolff. Monte Carlo errors with less errors , 2004 .
[25] A. Üstünel,et al. Monge-Kantorovitch Measure Transportation and Monge-Ampère Equation on Wiener Space , 2004 .
[26] Y. Atchadé. An Adaptive Version for the Metropolis Adjusted Langevin Algorithm with a Truncated Drift , 2006 .
[27] C. Andrieu,et al. On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.
[28] L. Rockwood. Introduction to population ecology , 2006 .
[29] J. Rosenthal,et al. Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms , 2007, Journal of Applied Probability.
[30] Tito Homem-de-Mello,et al. On Rates of Convergence for Stochastic Optimization Problems Under Non--Independent and Identically Distributed Sampling , 2008, SIAM J. Optim..
[31] C. Villani. Optimal Transport: Old and New , 2008 .
[32] Guillaume Carlier,et al. From Knothe's Transport to Brenier's Map and a Continuation Method for Optimal Transport , 2008, SIAM J. Math. Anal..
[33] Jeffrey S. Rosenthal,et al. Markov Chain Monte Carlo Algorithms: Theory and Practice , 2009 .
[34] J. Rosenthal,et al. Department of , 1993 .
[35] S. Rounds,et al. Controls on biochemical oxygen demand in the upper Klamath River, Oregon , 2010 .
[36] Andrew Gelman,et al. Handbook of Markov Chain Monte Carlo , 2011 .
[37] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[38] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[39] L. Pascale,et al. The Monge problem in ${\mathbb R}^d$ , 2011 .
[40] C. Geyer,et al. Correction: Variable transformation to obtain geometric ergodicity in the random-walk Metropolis algorithm , 2012, 1302.6741.
[41] James Martin,et al. A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..
[42] Youssef M. Marzouk,et al. Bayesian inference with optimal maps , 2011, J. Comput. Phys..
[43] Sebastian Reich,et al. A Nonparametric Ensemble Transform Method for Bayesian Inference , 2012, SIAM J. Sci. Comput..
[44] A. Vershik. Long History of the Monge-Kantorovich Transportation Problem , 2013 .
[45] L. Ambrosio,et al. A User’s Guide to Optimal Transport , 2013 .
[46] Nicolas Bonnotte,et al. From Knothe's Rearrangement to Brenier's Optimal Transport Map , 2012, SIAM J. Math. Anal..
[47] Heikki Haario,et al. Randomize-Then-Optimize: A Method for Sampling from Posterior Distributions in Nonlinear Inverse Problems , 2014, SIAM J. Sci. Comput..
[48] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[49] Matthew Parno,et al. Transport maps for accelerated Bayesian computation , 2015 .