Differential flatness and absolute equivalence

In this paper we give a formulation of differential flatness-a concept originally introduced by Fliess, Levine, Martin, and Rouchon (1992)-in terms of absolute equivalence between exterior differential systems. Systems which are differentially flat have several useful properties which can be exploited to generate effective control strategies for nonlinear systems. The original definition of flatness was given in the context of differential algebra, and required that all mappings be meromorphic functions. Our formulation of flatness does not require any algebraic structure and allows one to use tools from exterior differential systems to help characterize differentially flat systems. In particular, we show that in the case of single input control systems (i.e., codimension 2 Pfaffian systems), a system is differentially flat if and only if it is feedback linearizable via static state feedback. However, in higher codimensions feedback linearizability and flatness are not equivalent: one must be careful with the role of time as well the use of prolongations which may not be realizable as dynamic feedbacks in a control setting. Applications of differential flatness to nonlinear control systems and open questions are also discussed.<<ETX>>