The action site of the synthetic kainoid (2S,3R,4R)-3-carboxymethyl-4-(4-methylphenylthio)pyrrolidine-2-carboxylic acid (PSPA-4), an analogue of Japanese mushroom poison acromelic acid, for allodynia (tactile pain).

[1]  R. Sakai,et al.  Antinociceptive effects of MSVIII-19, a functional antagonist of the GluK1 kainate receptor , 2011, PAIN.

[2]  K. Furuta,et al.  Synthesis of an acromelic acid A analog-based 11C-labeled PET tracer for exploration of the site of action of acromelic acid A in allodynia induction. , 2011, Bioorganic & medicinal chemistry letters.

[3]  C. Mulle,et al.  Kainate receptors coming of age: milestones of two decades of research , 2011, Trends in Neurosciences.

[4]  Masahiro Yamaguchi,et al.  Characterization of nestin expression in the spinal cord of GFP transgenic mice after peripheral nerve injury , 2010, Neuroscience.

[5]  Graham L. Collingridge,et al.  A nomenclature for ligand-gated ion channels , 2009, Neuropharmacology.

[6]  D. Jane,et al.  Antagonism of recombinant and native GluK3-containing kainate receptors , 2009, Neuropharmacology.

[7]  G. Collingridge,et al.  Kainate receptors: Pharmacology, function and therapeutic potential , 2009, Neuropharmacology.

[8]  C. Mulle,et al.  Kainate receptors in epilepsy and excitotoxicity , 2009, Neuroscience.

[9]  J. Dostrovsky,et al.  Neuropathic pain , 2008, Neurology.

[10]  Masaaki Suzuki,et al.  A synthetic kainoid, (2S,3R,4R)-3-carboxymethyl-4-(phenylthio)pyrrolidine-2-carboxylic acid (PSPA-1) serves as a novel anti-allodynic agent for neuropathic pain. , 2007, European journal of pharmacology.

[11]  M. Zhuo,et al.  Kainate receptors and pain: from dorsal root ganglion to the anterior cingulate cortex. , 2007, Current pharmaceutical design.

[12]  P. Ornstein,et al.  Antiallodynic and Antihyperalgesic Effects of Selective Competitive GLUK5 (GluR5) Ionotropic Glutamate Receptor Antagonists in the Capsaicin and Carrageenan Models in Rats , 2006, Journal of Pharmacology and Experimental Therapeutics.

[13]  M. Zhuo,et al.  Altered Behavioral Responses to Noxious Stimuli and Fear in Glutamate Receptor 5 (GluR5)- or GluR6-Deficient Mice , 2005, The Journal of Neuroscience.

[14]  Y. Sasaguri,et al.  Acute and late effects on induction of allodynia by acromelic acid, a mushroom poison related structurally to kainic acid , 2004, British journal of pharmacology.

[15]  K. Furuta,et al.  A simple acromelic acid analog potentially useful for receptor photoaffinity labeling and biochemical studies , 2004 .

[16]  M. Randić,et al.  Modulation of excitatory synaptic transmission in the spinal substantia gelatinosa of mice deficient in the kainate receptor GluR5 and/or GluR6 subunit , 2004, The Journal of physiology.

[17]  M. Chao,et al.  Kainate Receptors Expressed by a Subpopulation of Developing Nociceptors Rapidly Switch from High to Low Ca2+Permeability , 2001, The Journal of Neuroscience.

[18]  G. Kerchner,et al.  Presynaptic Kainate Receptors Regulate Spinal Sensory Transmission , 2001, The Journal of Neuroscience.

[19]  D. S. Williamson,et al.  The synthesis of 4-arylsulfanyl-substituted kainoid analogues from trans-4-hydroxy-L-proline. , 2000, Bioorganic & medicinal chemistry letters.

[20]  E. Sundström,et al.  Ionotropic glutamate receptor expression in human spinal cord during first trimester development. , 2000, Brain research. Developmental brain research.

[21]  P. Ornstein,et al.  Kainate GluR5 receptor subtype mediates the nociceptive response to formalin in the rat , 1998, Neuropharmacology.

[22]  S. Heinemann,et al.  Rat GluR7 and a Carboxy-Terminal Splice Variant, GluR7b, Are Functional Kainate Receptor Subunits with a Low Sensitivity to Glutamate , 1997, Neuron.

[23]  H. Shinozaki,et al.  Neurotoxicity of acromelic acid in cultured neurons from rat spinal cord , 1995, Neuroscience.

[24]  M. Mayer,et al.  Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A , 1993, Neuron.

[25]  W Wisden,et al.  A complex mosaic of high-affinity kainate receptors in rat brain , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  S. Nakanishi Molecular diversity of glutamate receptors and implications for brain function. , 1992, Science.

[27]  C. Stevens,et al.  Cloning of a putative glutamate receptor: A low affinity kainate-binding subunit , 1992, Neuron.

[28]  R. Faull,et al.  Autoradiographic localisation of NMDA, quisqualate and kainic acid receptors in human spinal cord , 1990, Neuroscience Letters.

[29]  M. Zimmermann,et al.  Ethical guidelines for investigations of experimental pain in conscious animals , 1983, Pain.

[30]  J. Wamsley,et al.  Autoradiographic localization of high-affinity [3H]kainic acid binding sites in the rat forebrain. , 1983, European journal of pharmacology.

[31]  S. Heinemann,et al.  Cloned glutamate receptors. , 1994, Annual review of neuroscience.

[32]  Takeshi Matsumoto,et al.  Isolation and structure of aromelic acid A and B. New kainoids of , 1983 .