Pseudo-inverses of difference matrices and their application to sparse signal approximation

Abstract We derive new explicit expressions for the components of Moore–Penrose inverses of symmetric difference matrices. These generalized inverses are applied in a new regularization approach for scattered data interpolation based on partial differential equations. The columns of the Moore–Penrose inverse then serve as elements of a dictionary that allow a sparse signal approximation. In order to find a set of suitable data points for signal representation we apply the orthogonal matching pursuit (OMP) method.

[1]  Zhi-Li Zhang,et al.  Incremental Computation of Pseudo-Inverse of Laplacian: Theory and Applications , 2013, ArXiv.

[2]  R. Penrose A Generalized inverse for matrices , 1955 .

[3]  Joachim Weickert,et al.  An Optimal Control Approach to Find Sparse Data for Laplace Interpolation , 2013, EMMCVPR.

[4]  Stefan Carlsson,et al.  Sketch based coding of grey level images , 1988 .

[5]  A. Wathen,et al.  On the Best Least Squares Approximation of Continuous Functions using Linear Splines with Free Knots , 1991 .

[6]  Hans-Peter Seidel,et al.  Towards PDE-Based Image Compression , 2005, VLSM.

[7]  Thomas Brox,et al.  iPiano: Inertial Proximal Algorithm for Nonconvex Optimization , 2014, SIAM J. Imaging Sci..

[8]  Cliford Bell Generalized inverses of circulant and generalized circulant matrices , 1981 .

[9]  Joachim Weickert,et al.  Discrete Green's Functions for Harmonic and Biharmonic Inpainting with Sparse Atoms , 2015, EMMCVPR.

[10]  Laurent Arthur Hoeltgen,et al.  Optimal interpolation data for image reconstructions , 2014 .

[11]  D. Jupp Approximation to Data by Splines with Free Knots , 1978 .

[12]  S. R. Searle,et al.  On inverting circulant matrices , 1979 .

[13]  Joachim Weickert,et al.  Understanding, Optimising, and Extending Data Compression with Anisotropic Diffusion , 2014, International Journal of Computer Vision.

[14]  Knut-Andreas Lie,et al.  Scale Space and Variational Methods in Computer Vision, Second International Conference, SSVM 2009, Voss, Norway, June 1-5, 2009. Proceedings , 2009, SSVM.

[15]  Frank Neumann,et al.  Optimising Spatial and Tonal Data for Homogeneous Diffusion Inpainting , 2011, SSVM.

[16]  Robert Hummel,et al.  Reconstructions from zero crossings in scale space , 1989, IEEE Trans. Acoust. Speech Signal Process..

[17]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[18]  James H. Elder,et al.  Are Edges Incomplete? , 1999, International Journal of Computer Vision.

[19]  W. Marsden I and J , 2012 .

[20]  Hubert Schwetlick,et al.  Least squares approximation by splines with free knots , 1995 .

[21]  Zhi-Li Zhang,et al.  Incremental Computation of Pseudo-Inverse of Laplacian , 2013, COCOA.

[22]  Donald E. Knuth,et al.  Johann Faulhaber and sums of powers , 1992, math/9207222.

[23]  Gleb Beliakov,et al.  Least squares splines with free knots: global optimization approach , 2004, Appl. Math. Comput..

[24]  I. Gutman,et al.  Resistance distance and Laplacian spectrum , 2003 .