A new parameterization method for all stabilizing controllers of nD systems without coprime factorizability
暂无分享,去创建一个
[1] H. M. Möller,et al. New Constructive Methods in Classical Ideal Theory , 1986 .
[2] M. Vidyasagar,et al. Algebraic and topological aspects of feedback stabilization , 1980 .
[3] K. Mori. Parameterization of stabilizing controllers over commutative rings with application to multidimensional systems , 2002 .
[4] Virendra Sule,et al. Corrigendum: Feedback Stabilization over Commutative rings: The Matrix Case , 1998 .
[5] Dante C. Youla,et al. Modern Wiener-Hopf Design of Optimal Controllers. Part I , 1976 .
[6] V. Kučera. Stability of Discrete Linear Feedback Systems , 1975 .
[7] Takeshi Hirai,et al. 3 A necessary and sufficient condition , 1970 .
[8] Kenichi Abe,et al. Feedback Stabilization over Commutative Rings: Further Study of the Coordinate-Free Approach , 2001, SIAM J. Control. Optim..
[9] H. Kobayashi,et al. The Grobner basis of a module over KUX1,...,Xne and polynomial solutions of a system of linear equations , 1986, SYMSAC '86.
[10] Virendra Sule,et al. Feedback Stabilization Over Commutative Rings: The Matrix Case , 1994 .
[11] Zhiping Lin,et al. Feedback stabilization of MIMO 3-D linear systems , 1999, IEEE Trans. Autom. Control..
[12] Vijay Raman,et al. A necessary and sufficient condition for feedback stabilization in a factorial ring , 1984 .
[13] C. Desoer,et al. Feedback system design: The fractional representation approach to analysis and synthesis , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.
[14] Virendra Sule,et al. Algebraic geometric aspects of feedback stabilization , 1992 .