A new parameterization method for all stabilizing controllers of nD systems without coprime factorizability

The authors are concerned with multidimensional systems with structural stability based on the algebraic approach. This paper presents a parameterization method of stabilizing controllers. The result in this paper does not assume the existence of the coprime factorizability. In order to reduce the number of parameters, computation of the Grobner basis for modules is employed.

[1]  H. M. Möller,et al.  New Constructive Methods in Classical Ideal Theory , 1986 .

[2]  M. Vidyasagar,et al.  Algebraic and topological aspects of feedback stabilization , 1980 .

[3]  K. Mori Parameterization of stabilizing controllers over commutative rings with application to multidimensional systems , 2002 .

[4]  Virendra Sule,et al.  Corrigendum: Feedback Stabilization over Commutative rings: The Matrix Case , 1998 .

[5]  Dante C. Youla,et al.  Modern Wiener-Hopf Design of Optimal Controllers. Part I , 1976 .

[6]  V. Kučera Stability of Discrete Linear Feedback Systems , 1975 .

[7]  Takeshi Hirai,et al.  3 A necessary and sufficient condition , 1970 .

[8]  Kenichi Abe,et al.  Feedback Stabilization over Commutative Rings: Further Study of the Coordinate-Free Approach , 2001, SIAM J. Control. Optim..

[9]  H. Kobayashi,et al.  The Grobner basis of a module over KUX1,...,Xne and polynomial solutions of a system of linear equations , 1986, SYMSAC '86.

[10]  Virendra Sule,et al.  Feedback Stabilization Over Commutative Rings: The Matrix Case , 1994 .

[11]  Zhiping Lin,et al.  Feedback stabilization of MIMO 3-D linear systems , 1999, IEEE Trans. Autom. Control..

[12]  Vijay Raman,et al.  A necessary and sufficient condition for feedback stabilization in a factorial ring , 1984 .

[13]  C. Desoer,et al.  Feedback system design: The fractional representation approach to analysis and synthesis , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[14]  Virendra Sule,et al.  Algebraic geometric aspects of feedback stabilization , 1992 .