Robust Gain-Scheduled Control of Switched-Mode DC–DC Converters

This paper presents a robust control synthesis framework for switched DC-DC converters. The framework is based on an LMI formulation which can be solved automatically by efficient convex optimization algorithms. The method considers parameter-dependent Lyapunov functions such that it can take into account the uncertainty of converter parameters, nonlinear dynamics (such as state-dependence), as well as transient and steady-state performances that can be imposed beforehand. The result of the proposed synthesis method is a gain-scheduled controller that guarantees stability despite the accounted nonlinear dynamics and can provide excellent performances. Two different synthesis examples are shown for a DC-DC boost converter and their performance and robustness are compared with a standard control approach as current-mode control, both in nominal and non-nominal conditions. Finally, the proposed approach is verified with experimental results.

[1]  S. Maâlej Commande robuste des systèmes à paramètres variables , 2014 .

[2]  Isabelle Queinnec,et al.  Passivity‐based control for large‐signal stability of high‐order switching converters , 2012 .

[3]  A. El Aroudi,et al.  Robust optimal control of bilinear DC–DC converters , 2011 .

[4]  T. Hu A Nonlinear-System Approach to Analysis and Design of Power-Electronic Converters With Saturation and Bilinear Terms , 2011, IEEE Transactions on Power Electronics.

[5]  Gun-Woo Moon,et al.  Implementation of digitally controlled phase shift full bridge converter for server power supply , 2010, 2010 IEEE Energy Conversion Congress and Exposition.

[6]  Chih-Wen Liu,et al.  Adaptive control scheme for interleaved DC/DC power converters , 2010, The 2010 International Power Electronics Conference - ECCE ASIA -.

[7]  Mohammad Ali Ebrahimzadeh,et al.  Adaptive and fast-response controller for Boost PFC converter with wide range of operating conditions , 2010, 2010 1st Power Electronic & Drive Systems & Technologies Conference (PEDSTC).

[8]  A Babazadeh,et al.  Current-Limited Time-Optimal Response in Digitally Controlled DC–DC Converters , 2010, IEEE Transactions on Power Electronics.

[9]  Firuz Zare,et al.  Multi-output DC-DC converters based on diode-clamped converters configuration: Topology and control strategy , 2010 .

[10]  Paolo Mattavelli,et al.  A Simple Digital Autotuning For Analog Controller in SMPS , 2010, IEEE Transactions on Power Electronics.

[11]  R. Leyva,et al.  Fuzzy control in DC-DC converters: An LMI approach , 2009, 2009 35th Annual Conference of IEEE Industrial Electronics.

[12]  D. Maksimovic,et al.  Hybrid Digital Adaptive Control for Fast Transient Response in Synchronous Buck DC–DC Converters , 2009, IEEE Transactions on Power Electronics.

[13]  Yen-Shin Lai,et al.  Parameter Tuning Method for Digital Power Converter With Predictive Current-Mode Control , 2009, IEEE Transactions on Power Electronics.

[14]  E. Santi,et al.  Improved Online Identification of a DC–DC Converter and Its Control Loop Gain Using Cross-Correlation Methods , 2009, IEEE Transactions on Power Electronics.

[15]  Siew-Chong Tan,et al.  A Unified Approach for the Derivation of Robust Control for Boost PFC Converters , 2009, IEEE Transactions on Power Electronics.

[16]  Isabelle Queinnec,et al.  Robust LQR Control for PWM Converters: An LMI Approach , 2009, IEEE Transactions on Industrial Electronics.

[17]  Ramon Leyva,et al.  QFT robust control of current-mode converters: application to power conditioning regulators , 2009 .

[18]  Shu Wang,et al.  Explicit Model Predictive Control of DC–DC Switched-Mode Power Supplies With Extended Kalman Filtering , 2009, IEEE Transactions on Industrial Electronics.

[19]  P. Mattavelli,et al.  Mixed-Signal Voltage-Mode Control for DC–DC Converters With Inherent Analog Derivative Action , 2008, IEEE Transactions on Power Electronics.

[20]  K. Acharya,et al.  Multiple Lyapunov Function Based Reaching Condition for Orbital Existence of Switching Power Converters , 2008, IEEE Transactions on Power Electronics.

[21]  M.G. Ortiz-Lopez,et al.  Average Current-Mode Control Scheme for a Quadratic Buck Converter With a Single Switch , 2008, IEEE Transactions on Power Electronics.

[22]  D. Maksimovic,et al.  Small-Signal Discrete-Time Modeling of Digitally Controlled PWM Converters , 2007, IEEE Transactions on Power Electronics.

[23]  P.L.D. Peres,et al.  Gain-Scheduled Controllers for Linear Parameter-Varying Systems with Saturating Actuators: LMI-based Design , 2007, 2007 American Control Conference.

[24]  Emilio Figueres,et al.  Adaptive two-loop Voltage-mode control of DC-DC switching converters , 2006, IEEE Transactions on Industrial Electronics.

[25]  C.K. Tse,et al.  Adaptive feedforward and feedback control schemes for sliding mode controlled power converters , 2006, IEEE Transactions on Power Electronics.

[26]  Valter J. S. Leite,et al.  Gain scheduled state feedback control of discrete-time systems with time-varying uncertainties: an LMI approach , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[27]  Yan-Fei Liu,et al.  A New Digital Control Algorithm to Achieve Optimal Dynamic Performance in DC-to-DC Converters , 2005, IEEE Transactions on Power Electronics.

[28]  Ricardo C. L. F. Oliveira,et al.  LMI approach for H linear parameter-varying state feedback control , 2005 .

[29]  A. Ž. Rakić,et al.  Linear robust control of DC/DC converters: Part I – Deterministic switching , 2005 .

[30]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[31]  D. Maksimovic,et al.  Impact of digital control in power electronics , 2004, 2004 Proceedings of the 16th International Symposium on Power Semiconductor Devices and ICs.

[32]  Robert W. Erickson,et al.  Fundamentals of Power Electronics , 2001 .

[33]  R. Leyva,et al.  Sliding-mode control of interleaved boost converters , 2000 .

[34]  R. Ortega,et al.  Analysis and experimentation of nonlinear adaptive controllers for the series resonant converter , 2000 .

[35]  GENE F. WALLIS,et al.  Generalized approach for μ synthesis of robust switching regulators , 2000, IEEE Trans. Aerosp. Electron. Syst..

[36]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[37]  Paolo Mattavelli,et al.  Small-signal analysis of DC-DC converters with sliding mode control , 1995, Proceedings of 1995 IEEE Applied Power Electronics Conference and Exposition - APEC'95.

[38]  Pascal Gahinet,et al.  H/sub /spl infin// design with pole placement constraints: an LMI approach , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[39]  D. Boroyevich,et al.  Control of boost converter with adjustable output voltage and unknown resistive load , 1994, Proceedings of 1994 Power Electronics Specialist Conference - PESC'94.

[40]  R. B. Ridley,et al.  A new, continuous-time model for current-mode control (power convertors) , 1991 .

[41]  Hebertt Sira-Ramírez,et al.  Sliding motions in bilinear switched networks , 1987 .

[42]  Nathan O. Sokal,et al.  Near-Optimum Dynamic Regulation of DC-DC Converters Using Feed-Forward of Output Current and Input Voltage with Current-Mode Control , 1986, IEEE Transactions on Power Electronics.

[43]  Slobodan Cuk,et al.  A general unified approach to modelling switching-converter power stages , 1976, 1970 IEEE Power Electronics Specialists Conference.

[44]  Arkadi Nemirovski,et al.  Lmi Control Toolbox For Use With Matlab , 2014 .

[45]  Isabelle Queinnec,et al.  LMI robust control design for boost PWM converters , 2010 .

[46]  L. Corradini,et al.  Digital Hysteretic Voltage-Mode Control for DC–DC Converters Based on Asynchronous Sampling , 2009, IEEE Transactions on Power Electronics.

[47]  Chun-Fei Hsu,et al.  Self-regulating fuzzy control for forward DC-DC converters using an 8-bit microcontroller , 2009 .

[48]  Sophie Tarbouriech,et al.  Advanced strategies in control systems with input and output constraints , 2007 .

[49]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[50]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[51]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .