The origin of ferroelectricity in magnetoelectric YMnO3

Understanding the ferroelectrocity in magnetic ferroelectric oxides is of both fundamental and technological importance. Here, we identify the nature of the ferroelectric phase transition in the hexagonal manganite, YMnO3, using a combination of single-crystal X-ray diffraction, thorough structure analysis and first-principles density-functional calculations. The ferroelectric phase is characterized by a buckling of the layered MnO5 polyhedra, accompanied by displacements of the Y ions, which lead to a net electric polarization. Our calculations show that the mechanism is driven entirely by electrostatic and size effects, rather than the usual changes in chemical bonding associated with ferroelectric phase transitions in perovskite oxides. As a result, the usual indicators of structural instability, such as anomalies in Born effective charges on the active ions, do not hold. In contrast to the chemically stabilized ferroelectrics, this mechanism for ferroelectricity permits the coexistence of magnetism and ferroelectricity, and so suggests an avenue for designing novel magnetic ferroelectrics.

[1]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[2]  R. Cohen,et al.  ELECTRONIC-STRUCTURE STUDIES OF THE DIFFERENCES IN FERROELECTRIC BEHAVIOR OF BATIO3 AND PBTIO3 , 1992 .

[3]  J. Scott,et al.  Millimeter-wavelength spectroscopy of the ferroelectric phase transition in tris-sarcosine calcium chloride [ ( C H 3 NHC H 2 C O O H ) 3 Ca Cl 2 ] , 1983 .

[4]  D. Vanderbilt,et al.  Giant LO-TO splittings in perovskite ferroelectrics. , 1994, Physical review letters.

[5]  T. Palstra,et al.  Hexagonal YMnO(3). , 2001, Acta crystallographica. Section C, Crystal structure communications.

[6]  X. Gonze,et al.  Dynamical atomic charges: The case of ABO(3) compounds , 1998 .

[7]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[8]  T. Yoshimura,et al.  Epitaxially grown YMnO3 film: New candidate for nonvolatile memory devices , 1996 .

[9]  M. T. Casais,et al.  Magnetic structure of hexagonalRMnO3(R=Y,Sc):Thermal evolution from neutron powder diffraction data , 2000 .

[10]  Y. Tokura,et al.  Magnetic control of ferroelectric polarization , 2003, Nature.

[11]  E. F. Bertaut,et al.  Proprietes magnetiques et structures du manganite d'yttrium , 1963 .

[12]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[13]  T. Palstra,et al.  Hexagonal LuMnO3 revisited , 2001 .

[14]  R. Resta Macroscopic electric polarization as a geometric quantum phase , 1993 .

[15]  Ronald E. Cohen,et al.  Origin of ferroelectricity in perovskite oxides , 1992, Nature.

[16]  Alessio Filippetti,et al.  Self-interaction-corrected pseudopotential scheme for magnetic and strongly-correlated systems , 2003 .

[17]  A. M. Glazer,et al.  The classification of tilted octahedra in perovskites , 1972 .

[18]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[19]  H. Yakel,et al.  On the crystal structure of the manganese(III) trioxides of the heavy lanthanides and yttrium , 1963 .

[20]  E. F. Bertaut,et al.  Sur des proprietes magnetiques du manganite d'yttrium , 1965 .

[21]  Ram Seshadri,et al.  Visualizing the Role of Bi 6s “Lone Pairs” in the Off-Center Distortion in Ferromagnetic BiMnO3 , 2001 .

[22]  Y. Ishibashi,et al.  Neutron diffraction study of structural phase transition in ferroelectric Li2Ge7O15 , 1987 .

[23]  Nicola A. Hill,et al.  Why Are There so Few Magnetic Ferroelectrics , 2000 .

[24]  James F. Scott,et al.  The Physics of Ferroelectric Memories , 1998 .

[25]  K. Łukaszewicz,et al.  X-Ray investigations of the crystal structure and phase transitions of YMnO3 , 1974 .

[26]  T. Yoshimura,et al.  Ferroelectric properties of YMnO3 epitaxial films for ferroelectric-gate field-effect transistors , 2003 .

[27]  M. Fiebig,et al.  Observation of coupled magnetic and electric domains , 2002, Nature.

[28]  Coupling of ferroelectric and antiferromagnetic order parameters in hexagonal RMnO3 , 2002 .

[29]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[30]  Raffaele Resta,et al.  MACROSCOPIC POLARIZATION IN CRYSTALLINE DIELECTRICS : THE GEOMETRIC PHASE APPROACH , 1994 .

[31]  P. Halasyamani,et al.  Bi(2)TeO(5): synthesis, structure, and powder second harmonic generation properties. , 2001, Inorganic chemistry.

[32]  A. Filippetti,et al.  Coexistence of magnetism and ferroelectricity in perovskites , 2002 .

[33]  G. A. Smolenskiǐ,et al.  Coexistence of Magnetic and Electric Ordering in Crystals , 1964 .

[34]  B. V. Aken Structural response to electronic transitions in hexagonal and ortho-manganites , 2001 .

[35]  A. Baldereschi,et al.  Role of covalent bonding in the polarization of perovskite oxides: The case of KNbO3. , 1994, Physical review. B, Condensed matter.

[36]  S. Abrahams Ferroelectricity and structure in the YMnO(3) family. , 2001, Acta crystallographica. Section B, Structural science.

[37]  Y. Tomioka,et al.  Structural response to O*-O ' and magnetic transitions in orthorhombic perovskites , 2002, cond-mat/0206181.

[38]  D. Reinen,et al.  Density Functional Studies on the Lone Pair Effect of the Trivalent Group (V) Elements: I. Electronic Structure, Vibronic Coupling, and Chemical Criteria for the Occurrence of Lone Pair Distortions in AX3Molecules (A=N to Bi; X=H, and F to I) , 2001 .

[39]  M. Iliev,et al.  Raman- and infrared-active phonons in hexagonal YMnO{sub 3}: Experiment and lattice-dynamical calculations , 1997 .

[40]  Nicola A. Spaldin,et al.  First-principles indicators of metallicity and cation off-centricity in the IV-VI rocksalt chalcogenides of divalent Ge, Sn, and Pb , 2003 .

[41]  G. Sawatzky,et al.  Interplay between orbital ordering and lattice distortions in LaMnO3, YVO3, and YTiO3 , 1999, cond-mat/9906010.

[42]  Pam A. Thomas,et al.  Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na(0.5)Bi(0.5)TiO(3). , 2002, Acta crystallographica. Section B, Structural science.

[43]  A. Baldereschi,et al.  Towards a quantum theory of polarization in ferroelectrics: The case of KNbO3. , 1993, Physical review letters.

[44]  M. Sakata,et al.  Evidence for Pb-O covalency in tetragonal PbTiO3. , 2001, Physical review letters.

[45]  Ilene J. Busch‐Vishniac Trends in Electromechanical Transduction , 1998 .

[46]  H. Takagi,et al.  Crystal structure and magnetic properties of hexagonal RMnO3 (R = Y, Lu, and Sc) and the effect of doping , 2002 .