Sequential Approximation of Functions in Sobolev Spaces Using Random Samples
暂无分享,去创建一个
[1] Xuemei Chen,et al. Almost Sure Convergence of the Kaczmarz Algorithm with Random Measurements , 2012 .
[2] Kailiang Wu,et al. Numerical Aspects for Approximating Governing Equations Using Data , 2018, J. Comput. Phys..
[3] P. Davis. Interpolation and approximation , 1965 .
[4] Kailiang Wu,et al. A Randomized Tensor Quadrature Method for High Dimensional Polynomial Approximation , 2017, SIAM J. Sci. Comput..
[5] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[6] T. J. Rivlin. An Introduction to the Approximation of Functions , 2003 .
[7] Kailiang Wu,et al. Sequential function approximation on arbitrarily distributed point sets , 2018, J. Comput. Phys..
[8] M. Powell,et al. Approximation theory and methods , 1984 .
[9] Stephen J. Wright,et al. An accelerated randomized Kaczmarz algorithm , 2013, Math. Comput..
[10] Yonina C. Eldar,et al. Acceleration of randomized Kaczmarz method via the Johnson–Lindenstrauss Lemma , 2010, Numerical Algorithms.
[11] Kailiang Wu,et al. Sequential function approximation with noisy data , 2018, J. Comput. Phys..
[12] Nikolaos M. Freris,et al. Randomized Extended Kaczmarz for Solving Least Squares , 2012, SIAM J. Matrix Anal. Appl..
[13] Alan Genz,et al. Testing multidimensional integration routines , 1984 .
[14] Claude Brezinski,et al. Convergence acceleration of Kaczmarz’s method , 2013, 1302.0196.
[15] Dongbin Xiu,et al. A Randomized Algorithm for Multivariate Function Approximation , 2017, SIAM J. Sci. Comput..
[16] R. Vershynin,et al. A Randomized Kaczmarz Algorithm with Exponential Convergence , 2007, math/0702226.
[17] D. Needell. Randomized Kaczmarz solver for noisy linear systems , 2009, 0902.0958.
[18] E. Cheney. Introduction to approximation theory , 1966 .
[19] T. Wallace,et al. Acceleration of kaczmarz using orthogonal subspace projections , 2013, 2013 Biomedical Sciences and Engineering Conference (BSEC).