The cyclotomic trace and algebraic K-theory of spaces

The cyclotomic trace is a map from algebraic K-theory of a group ring to a certain topological refinement of cyclic homology. The target is naturally mapped to topological Hochschild homology, and the cyclotomic trace lifts the topological Dennis trace. Our cyclic homology can be defined also for "group rings up to homotopy", and in this setting the cyclotomic trace produces invariants of Waldhausen's A-theory. Our main applications go in two directions. We show on the one hand that the K-theory assembly map is rationally injective for a large class of discrete groups, including groups which have finitely generated Eilenberg-MacLane homology in each degree. This is the analogue in algebraic K-theory of Novikov's conjecture about homotopy invariance of higher signatures. It implies for Quillen's K-groups the inclusion

[1]  J.-L. Loday $K$-théorie algébrique et représentations de groupes , 1976 .

[2]  M. Barratt,et al.  On the homology of non-connected monoids and their associated groups , 1972 .

[3]  T. Goodwillie On the general linear group and Hochschild homology , 1985 .

[4]  John D. S. Jones Cyclic homology and equivariant homology , 1987 .

[5]  G. Segal,et al.  Categories and cohomology theories , 1974 .

[6]  F. Waldhausen Algebraic K-theory of topological spaces. II , 1979 .

[7]  J. P. May,et al.  The geometry of iterated loop spaces , 1972 .

[8]  E. Y. Miller,et al.  equivariant function spaces and characteristic classes , 1986 .

[9]  Trace maps in algebraic K-theory and the Coates-Wiles homomorphism. , 1990 .

[10]  T. Goodwillie Cyclic homology, derivations, and the free loopspace☆ , 1985 .

[11]  W. Browder,et al.  Algebraic topology and algebraic k-theory , 1987 .

[12]  D. Burghelea,et al.  Cyclic homology and algebraic K-theory of spaces—II , 1986 .

[13]  C. Soulé On higher p-adic regulators , 1981 .

[14]  Friedhelm Waldhausen,et al.  Algebraic K-theory of spaces, localization, and the chromatic filtration of stable homotopy , 1984 .

[15]  Jon P. May,et al.  Equivariant Stable Homotopy Theory , 1986 .

[16]  D. M. Kan,et al.  Homotopy Limits, Completions and Localizations , 1987 .

[17]  G. Segal EQUIVARIANT STABLE HOMOTOPY THEORY , 1970 .

[18]  C. Soulé K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale , 1979 .

[19]  B. J. Sanderson,et al.  Δ-SETS I: HOMOTOPY THEORY , 1971 .

[20]  D. Quillen,et al.  Cyclic homology and the Lie algebra homology of matrices , 1984 .

[21]  D. Ravenel The Segal Conjecture for Cyclic Groups and its Consequences , 1984 .

[22]  Kazuhisa Shimakawa Infinite Loop G-Spaces Associated to Monoidal G-Graded Categories , 1989 .

[23]  Graeme Segal,et al.  Configuration-spaces and iterated loop-spaces , 1973 .

[24]  J. Milnor On axiomatic homology theory. , 1962 .

[25]  E. Dyer,et al.  Homology of Iterated Loop Spaces , 1962 .

[26]  Hyman Bass,et al.  Algebraic K-theory , 1968 .

[27]  F. Waldhausen Algebraic K-theory of spaces, concordance, and stable homotopy theory , 1987 .

[28]  C. Mcgibbon,et al.  Stable properties of rank 1 loop structures , 1981 .

[29]  L. Washington Introduction to Cyclotomic Fields , 1982 .

[30]  T. Dieck Orbittypen und äquivariante Homologie II , 1972 .

[31]  W. Dwyer,et al.  The homotopy theory of cyclic sets , 1985 .

[32]  D. Quillen,et al.  Higher algebraic K-theory: I , 1973 .

[33]  J. Adams,et al.  Prerequisites (on equivariant stable homotopy) for Carlssons's lecture , 1984 .