Induction of Staghorn coral settlement and early post-settlement survival in laboratory conditions

[1]  T. Harder,et al.  Crustose coralline algae that promote coral larval settlement harbor distinct surface bacterial communities , 2020, Coral Reefs.

[2]  Dana E Williams,et al.  Larval longevity and competency patterns of Caribbean reef-building corals , 2020, PeerJ.

[3]  Rocío García-Urueña,et al.  Current status of Acropora palmata and Acropora cervicornis in the Colombian Caribbean: demography, coral cover and condition assessment , 2020, Hydrobiologia.

[4]  V. Paul,et al.  The impact of macroalgae and cyanobacteria on larval survival and settlement of the scleractinian corals Acropora palmata, A. cervicornis and Pseudodiploria strigosa , 2020, Marine Biology.

[5]  Chaolun Allen Chen,et al.  Thermal Stress and Resilience of Corals in a Climate-Changing World , 2019, Journal of Marine Science and Engineering.

[6]  G. Diaz-Pulido,et al.  Coralline algal metabolites induce settlement and mediate the inductive effect of epiphytic microbes on coral larvae , 2018, Scientific Reports.

[7]  J. Arias‐González,et al.  Assisted fertilization of threatened Staghorn Coral to complement the restoration of nurseries in Southeastern Dominican Republic , 2018 .

[8]  G. Ricardo,et al.  Settlement patterns of the coral Acropora millepora on sediment-laden surfaces. , 2017, The Science of the total environment.

[9]  G. Diaz-Pulido,et al.  Crustose coralline algae and associated microbial biofilms deter seaweed settlement on coral reefs , 2017, Coral reefs.

[10]  C. Watson,et al.  Evaluation of Substrate Properties for Settlement of Caribbean Staghorn Coral Acropora cervicornis Larvae in a Land-Based System , 2016 .

[11]  P. Todd,et al.  Quantification of coral sperm collected during a synchronous spawning event , 2016, PeerJ.

[12]  V. Paul,et al.  Patterns of larval settlement preferences and post‑settlement survival for seven Caribbean corals , 2016 .

[13]  J. Garzón-Ferreira,et al.  CONDICION ACTUAL DE LAS FORMACIONES CORALINAS DE ACROPORA PALMATA Y A. CERVICONIS EN EL PARQUE NACIONAL NATURAL TAYRONA (COLOMBIA) , 2016 .

[14]  T. Harder,et al.  Chemical mediation of coral larval settlement by crustose coralline algae , 2015, Scientific Reports.

[15]  P. Mumby,et al.  Linking Demographic Processes of Juvenile Corals to Benthic Recovery Trajectories in Two Common Reef Habitats , 2015, PloS one.

[16]  R. Woesik,et al.  Contemporary white-band disease in Caribbean corals driven by climate change , 2015 .

[17]  R. de Nys,et al.  Larval Settlement: The Role of Surface Topography for Sessile Coral Reef Invertebrates , 2015, PloS one.

[18]  V. Paul,et al.  The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals , 2014, Proceedings of the Royal Society B: Biological Sciences.

[19]  Sarah M. Guermond,et al.  A cross-ocean comparison of responses to settlement cues in reef-building corals , 2014, PeerJ.

[20]  D. Lirman,et al.  Assessing techniques to enhance early post-settlement survival of corals in situ for reef restoration , 2014 .

[21]  R. Steneck,et al.  Larval settlement preferences of Acropora palmata and Montastraea faveolata in response to diverse red algae , 2014, Coral Reefs.

[22]  M. Hadfield,et al.  Localization of sensory mechanisms utilized by coral planulae to detect settlement cues , 2013 .

[23]  Q. Wang,et al.  Evidence for Multiple Phototransduction Pathways in a Reef-Building Coral , 2012, PloS one.

[24]  R. Woesik,et al.  Caribbean coral diseases: primary transmission or secondary infection? , 2012 .

[25]  N. Webster,et al.  Crustose Coralline Algae and a Cnidarian Neuropeptide Trigger Larval Settlement in Two Coral Reef Sponges , 2012, PloS one.

[26]  M. Hadfield,et al.  Larvae of Pocillopora damicornis (Anthozoa) settle and metamorphose in response to surface-biofilm bacteria , 2011 .

[27]  T. Harder,et al.  Induction of Larval Metamorphosis of the Coral Acropora millepora by Tetrabromopyrrole Isolated from a Pseudoalteromonas Bacterium , 2011, PloS one.

[28]  M. Miller,et al.  Coral larvae settle at a higher frequency on red surfaces , 2011, Coral Reefs.

[29]  R. Roberts,et al.  Is Settlement of Haliotis iris Larvae on Coralline Algae Triggered by the Alga or Its Surface Biofilm? , 2010 .

[30]  J. Ragle,et al.  IUCN Red List of Threatened Species , 2010 .

[31]  R. Steneck,et al.  Running the Gauntlet: Inhibitory Effects of Algal Turfs on the Processes of Coral Recruitment , 2010 .

[32]  S. Simpson,et al.  Coral Larvae Move toward Reef Sounds , 2010, PloS one.

[33]  N. Price Habitat selection, facilitation, and biotic settlement cues affect distribution and performance of coral recruits in French Polynesia , 2010, Oecologia.

[34]  R. Steneck,et al.  Larval settlement preferences and post-settlement survival of the threatened Caribbean corals Acropora palmata and A. cervicornis , 2010, Coral Reefs.

[35]  P. Schupp,et al.  Luminaolide, a novel metamorphosis-enhancing macrodiolide for scleractinian coral larvae from crustose coralline algae. , 2009, Tetrahedron letters.

[36]  B. Willis,et al.  Effects of benthic algae on the replenishment of corals and the implications for the resilience of coral reefs , 2008 .

[37]  R. Steneck,et al.  New perspectives on ecological mechanisms affecting coral recruitment on reefs , 2008 .

[38]  J. Pineda,et al.  Complexity and simplification in understanding recruitment in benthic populations , 2008, Population Ecology.

[39]  J. Bruno,et al.  Regional Decline of Coral Cover in the Indo-Pacific: Timing, Extent, and Subregional Comparisons , 2007, PloS one.

[40]  Y. Nakano,et al.  P-397 Characterization of a Natural Inducer of Coral Larval Metamorphosis , 2006 .

[41]  Y. Nakano,et al.  Corallinafuran and Corallinaether, Novel Toxic Compounds from Crustose Coralline Red Algae. , 2006 .

[42]  Y. Nakano,et al.  Corallinafuran and Corallinaether, Novel Toxic Compounds from Crustose Coralline Red Algae , 2005 .

[43]  Glenn De'ath,et al.  RECOGNITION AND SELECTION OF SETTLEMENT SUBSTRATA DETERMINE POST-SETTLEMENT SURVIVAL IN CORALS , 2004 .

[44]  Yong-Ki Hong,et al.  Multiple allelopathic activity of the crustose coralline algaLithophyllum yessoenseagainst settlement and germination of seaweed spores , 2004, Journal of Applied Phycology.

[45]  L. Blackall,et al.  Metamorphosis of a Scleractinian Coral in Response to Microbial Biofilms , 2004, Applied and Environmental Microbiology.

[46]  P. Wright,et al.  The symbiotic role of marine microbes on living surfaces , 2001, Hydrobiologia.

[47]  R. Aronson,et al.  White-band disease and the changing face of Caribbean coral reefs , 2001, Hydrobiologia.

[48]  Russ Babcock,et al.  Effects of sedimentation on settlement of Acropora millepora , 2004, Coral Reefs.

[49]  P. Sammarco,et al.  Effects of pressure on swimming behavior in planula larvae of the coral Porites astreoides (Cnidaria, Scleractinia) , 2003 .

[50]  G. R. Navas,et al.  Libro rojo de invertebrados marinos de Colombia , 2002 .

[51]  A. Antonius Pneophyllum conicum, a coralline red alga causing coral reef-death in Mauritius , 2001, Coral Reefs.

[52]  R. Hill,et al.  Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae , 2001 .

[53]  Ran Nathan,et al.  Spatial patterns of seed dispersal, their determinants and consequences for recruitment. , 2000, Trends in ecology & evolution.

[54]  A. Heyward,et al.  Natural inducers for coral larval metamorphosis , 1999, Coral Reefs.

[55]  M. Littler,et al.  Epithallus sloughing: a self-cleaning mechanism for coralline algae , 1999, Coral Reefs.

[56]  T. Kawaguchi,et al.  Isolation of an allelopathic substance from the crustose coralline algae, Lithophyllum spp., and its effect on the brown alga, Laminaria religiosa Miyabe (Phaeophyta) , 1998 .

[57]  J. Pawlik,et al.  Seasonal variation in biofouling of gels containing extracts of marine organisms , 1998 .

[58]  J. Hatfield Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance , 1998 .

[59]  P. Dunstan,et al.  Spatio-temporal variation in coral recruitment at different scales on Heron Reef, southern Great Barrier Reef , 1998, Coral Reefs.

[60]  J. Connell Disturbance and recovery of coral assemblages , 1997, Coral Reefs.

[61]  R. Scheibling,et al.  Role of early post-settlement mortality in recruitment of benthic marine invertebrates , 1997 .

[62]  D. Keats,et al.  Antifouling effects of epithallial shedding in three crustose coralline algae (Rhodophyta, Coralinales) on a coral reef , 1997 .

[63]  P. Qian,et al.  Juvenile mortality in benthic marine invertebrates , 1997 .

[64]  H. Lasker,et al.  Larval development and settlement behavior of the gorgonian coral Plexaura kuna (Lasker, Kim and Coffroth) , 1996 .

[65]  J. Pawlik,et al.  A NEW ANTIFOULING ASSAY METHOD: RESULTS FROM FIELD EXPERIMENTS USING EXTRACTS OF FOUR MARINE ORGANISMS , 1995 .

[66]  D. Morse,et al.  Enzymatic Characterization of the Morphogen Recognized by Agaricia humilis (Scleractinian Coral) Larvae. , 1991, The Biological bulletin.

[67]  G. J. Smith,et al.  Perturbation and change in coral reef communities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[68]  A. Bernatowicz Marine Algae of the Eastern Tropical and Subtropical Coasts of the Americas , 1961 .