Evolution of Hot Polaron States with a Nanosecond Lifetime in a Manganite Perovskite

Understanding and controlling the relaxation process of optically excited charge carriers in solids with strong correlations is of great interest in the quest for new strategies to exploit solar energy. Usually, optically excited electrons in a solid thermalize rapidly on a femtosecond to picosecond timescale due to interactions with other electrons and phonons. New mechanisms to slow down thermalization will thus be of great significance for efficient light energy conversion, e.g., in photovoltaic devices. Ultrafast optical pump–probe experiments in the manganite Pr0.65Ca0.35MnO3, a photovoltaic, thermoelectric, and electrocatalytic material with strong polaronic correlations, reveal an ultraslow recombination dynamics on a nanosecond‐time scale. The nature of long living excitations is further elucidated by photovoltaic measurements, showing the presence of photodiffusion of excited electron–hole polaron pairs. Theoretical considerations suggest that the excited charge carriers are trapped in a hot polaron state. Escape from this state is possible via a slow dipole‐forbidden recombination process or via rare thermal fluctuations toward a conical intersection followed by a radiation‐less decay. The strong correlation between the excited polaron and the octahedral dynamics of its environment appears to be substantial for stabilizing the hot polaron.

[1]  S. Techert,et al.  Temperature- and doping-dependent optical absorption in the small-polaron system Pr1−xCaxMnO3. , 2015 .

[2]  M. Seibt,et al.  Current–voltage characteristics of manganite–titanite perovskite junctions , 2015, Beilstein journal of nanotechnology.

[3]  C. Jooss,et al.  Effects of interaction and disorder on polarons in colossal resistance manganite Pr0.68Ca0.32MnO3 thin films , 2014 .

[4]  M. Eckstein,et al.  Coexistence of excited polarons and metastable delocalized states in photoinduced metals , 2014, 1410.4298.

[5]  M Sikorski,et al.  A time-dependent order parameter for ultrafast photoinduced phase transitions. , 2014, Nature materials.

[6]  Richard D. Averitt,et al.  Dynamics and Control in Complex Transition Metal Oxides , 2014 .

[7]  A. Knop‐Gericke,et al.  In Situ XANES/XPS Investigation of Doped Manganese Perovskite Catalysts , 2014 .

[8]  Y. Tomioka,et al.  Glass-like recovery of antiferromagnetic spin ordering in a photo-excited manganite Pr0.7Ca0.3MnO3 , 2014, Scientific Reports.

[9]  D. Su,et al.  Polaron absorption for photovoltaic energy conversion in a manganite-titanate pn heterojunction , 2012 .

[10]  Masao Nakamura,et al.  Transient photoinduced 'hidden' phase in a manganite. , 2011, Nature materials.

[11]  E. Aydil,et al.  Hot-Electron Transfer from Semiconductor Nanocrystals , 2010, Science.

[12]  J. Bielecki,et al.  Two-component heat diffusion observed in LaMnO3 and La0.7Ca0.3MnO3 , 2010 .

[13]  G. Lüpke,et al.  Ultrafast quasi-particle dynamics of charge/orbital ordered and ferromagnetic clusters in La0.7Ca0.3MnO3 , 2009 .

[14]  S. Johnson,et al.  Ultrafast structural phase transition driven by photoinduced melting of charge and orbital order. , 2009, Physical review letters.

[15]  Takayoshi Kobayashi,et al.  Ultrafast optical probes of polaron dynamics in La0.7Ca0.3MnO3 thin films , 2009 .

[16]  K. Miyano,et al.  Pump-and-probe study in LaMnO 3 thin films , 2008 .

[17]  Zhu-An Xu,et al.  Time-resolved optical studies of spin and quasiparticle dynamics in colossal magnetoresistance materials: La 0.67 Ca 0.33 MnO 3 , La 0.67 Sr 0.33 MnO 3 , and Sr 2 FeMoO 6 , 2008 .

[18]  E. Dagotto,et al.  Excitons in the one-dimensional Hubbard model: a real-time study. , 2008, Physical review letters.

[19]  R. Klie,et al.  Experimental confirmation of Zener-polaron-type charge and orbital ordering in Pr1−xCaxMnO3 , 2007 .

[20]  T. Beetz,et al.  Polaron melting and ordering as key mechanisms for colossal resistance effects in manganites , 2007, Proceedings of the National Academy of Sciences.

[21]  T. Kopp,et al.  Polaronic excitations in colossal magnetoresistance manganite films , 2006 .

[22]  Q. Jia,et al.  Coherent optical and acoustic phonon generation correlated with the charge-ordering phase transition inLa1−xCaxMnO3 , 2005 .

[23]  Y. Sukhorukov,et al.  Electronic structure and polarons in CaMnO3-δ single crystals: Optical data , 2004 .

[24]  R. Broer,et al.  Ab initio study of the charge order and Zener polaron formation in half-doped manganites , 2004 .

[25]  D. Yarkony Marching along ridges. An extrapolatable approach to locating conical intersections. , 2004, Faraday discussions.

[26]  C. H. Patterson Competing crystal structures in La 0.5 Ca 0.5 Mn O 3 : Conventional charge order versus Zener polarons , 2004, cond-mat/0405299.

[27]  T. Ogasawara,et al.  Photoinduced spin dynamics in La 0.6 Sr 0.4 MnO 3 observed by time-resolved magneto-optical Kerr spectroscopy , 2003 .

[28]  K. J. Thomas,et al.  Soft x-ray resonant diffraction study of magnetic and orbital correlations in a manganite near half doping. , 2003, Physical review letters.

[29]  K. J. Thomas,et al.  Resonant x-ray diffraction of the magnetoresistant perovskite Pr0.6Ca0.4MnO3 , 2003, cond-mat/0305216.

[30]  C. H. Patterson,et al.  Ferromagnetic polarons in La0.5Ca0.5MnO3 and La0.33Ca0.67MnO3 , 2003, cond-mat/0302622.

[31]  Elbio Dagotto,et al.  Nanoscale Phase Separation and Colossal Magnetoresistance , 2003 .

[32]  J. Rodríguez-Carvajal,et al.  Zener polaron ordering in half-doped manganites. , 2002, Physical review letters.

[33]  G. Subías,et al.  High resolution x-ray absorption near edge structure at the Mn K edge of manganites , 2001 .

[34]  T. Ogasawara,et al.  Dynamics of photoinduced melting of charge/orbital order in a layered manganite La 0.5 Sr 1.5 MnO 4 , 2001 .

[35]  B. Güttler,et al.  Structural and chemical analysis of colossal magnetoresistance manganites by Raman spectrometry , 2001 .

[36]  K. Yoshino,et al.  Formation of polaron pairs and time-resolved photogeneration of free charge carriers in π-conjugated polymers , 2000 .

[37]  T. Venkatesan,et al.  Reply to "Comment on 'Evidence for the immobile bipolaron formation in the paramagnetic state of the magnetoresistive manganites"' , 2000, cond-mat/0501400.

[38]  Y. Okimoto,et al.  Optical study of Pr 1-x Ca x MnO 3 (x=0.4) in a magnetic field: Variation of electronic structure with charge ordering and disordering phase transitions , 1999 .

[39]  S. Cheong,et al.  Crossover from large to small polarons across the metal-insulator transition in manganites , 1998 .

[40]  K. H. Kim,et al.  Midgap states of La 1-x Ca x MnO 3 : Doping-dependent optical-conductivity studies , 1998 .

[41]  H. Drew,et al.  Optical conductivity of manganites: Crossover from Jahn-Teller small polaron to coherent transport in the ferromagnetic state , 1998, cond-mat/9803201.

[42]  H. Bässler,et al.  Langevin‐Type Charge Carrier Recombination in a Disordered Hopping System , 1995 .

[43]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[44]  A M Stoneham,et al.  The Jahn–Teller Effect in Molecules and Crystals , 1972 .

[45]  S. S. Perlman,et al.  p-n heterojunctions , 1964 .

[46]  William Shockley,et al.  The theory of p-n junctions in semiconductors and p-n junction transistors , 1949, Bell Syst. Tech. J..

[47]  H. A. Jahn,et al.  Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy , 1937 .

[48]  Stefan Rein,et al.  Lifetime Spectroscopy : A Method of Defect Characterization in Silicon for Photovoltaic Applications , 2005 .

[49]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .