The modular structure of an ontology: an empirical study

Efficiently extracting a module from a given ontology that captures all the ontology's knowledge about a set of specified terms is a well-understood task. This task can be based, for instance, on locality-based modules. In contrast, extracting all modules of an ontology is computationally difficult because there can be exponentially many. However, it is reasonable to assume that, by revealing the modular structure of an ontology, we can obtain information about its topicality, connectedness, structure, superfluous parts, or agreement between actual and intended modeling. Furthermore, incremental reasoning makes use of a number of, although not all possible, modules of an ontology. We report on experiments to estimate the number of modules of real-life ontologies. We also evaluate the modular structure of ontologies that we succeeded to fully modularise. In that evaluation, we look at the number and sizes of the modules, as well as the relation between module size and number and size of signatures that lead to the module. Chances are that the understanding we report about small ontologies can be applied to all ontologies.

[1]  Bijan Parsia,et al.  Modularity and Web Ontologies , 2006, KR.

[2]  Boontawee Suntisrivaraporn Module Extraction and Incremental Classification: A Pragmatic Approach for Ontologies , 2008, ESWC.

[3]  Ian Horrocks,et al.  From SHIQ and RDF to OWL: the making of a Web Ontology Language , 2003, J. Web Semant..

[4]  Bernardo Cuenca Grau,et al.  History Matters: Incremental Ontology Reasoning Using Modules , 2007, ISWC/ASWC.

[5]  Tamar Frankel [The theory and the practice...]. , 2001, Tijdschrift voor diergeneeskunde.

[6]  Vasant Honavar,et al.  Package-Based Description Logics - Preliminary Results , 2006, International Semantic Web Conference.

[7]  Carsten Lutz,et al.  Conservative Extensions in Expressive Description Logics , 2007, IJCAI.

[8]  Dietrich Rebholz-Schuhmann,et al.  Use of Shared Lexical Resources for Efficient Ontological Engineering , 2008, SWAT4LS.

[9]  Michel C. A. Klein,et al.  Structure-Based Partitioning of Large Concept Hierarchies , 2004, SEMWEB.

[10]  Boris Konev,et al.  Logical Difference and Module Extraction with CEX and MEX , 2008, Description Logics.

[11]  Ravishankar K. Iyer,et al.  Experimental evaluation , 1995 .

[12]  Ulrike Sattler,et al.  Which Kind of Module Should I Extract? , 2009, Description Logics.

[13]  Ian Horrocks,et al.  The Even More Irresistible SROIQ , 2006, KR.

[14]  Boris Konev,et al.  Formal Properties of Modularisation , 2009, Modular Ontologies.

[15]  Carsten Lutz,et al.  E-connections of abstract description systems , 2004, Artif. Intell..

[16]  Jérôme Euzenat,et al.  ModOnto: A Tool for Modularizing Ontologies , 2008, WONTO.

[17]  L. Napolitano Materials , 1984, Science.

[18]  B. Parsia,et al.  Combining OWL Ontologies Using E-Connections , 2005 .

[19]  Ian Horrocks,et al.  Modular Reuse of Ontologies: Theory and Practice , 2008, J. Artif. Intell. Res..

[20]  Rafael Berlanga Llavori,et al.  Safe and Economic Re-Use of Ontologies: A Logic-Based Methodology and Tool Support , 2008, OWLED.

[21]  Stefano Spaccapietra,et al.  Modular Ontologies: Concepts, Theories and Techniques for Knowledge Modularization , 2009, Modular Ontologies.

[22]  Luciano Serafini,et al.  Distributed Description Logics: Assimilating Information from Peer Sources , 2003, J. Data Semant..

[23]  Carsten Lutz,et al.  Did I Damage My Ontology? A Case for Conservative Extensions in Description Logics , 2006, KR.

[24]  James A. Hendler,et al.  Debugging unsatisfiable classes in OWL ontologies , 2005, J. Web Semant..

[25]  Bijan Parsia,et al.  Debugging Unsatisfiable Classes in OWL , 2005 .

[26]  Frank van Harmelen,et al.  Using C-OWL for the alignment and merging of medical ontologies , 2004, KR-MED.