Training Variational Autoencoders with Buffered Stochastic Variational Inference

The recognition network in deep latent variable models such as variational autoencoders (VAEs) relies on amortized inference for efficient posterior approximation that can scale up to large datasets. However, this technique has also been demonstrated to select suboptimal variational parameters, often resulting in considerable additional error called the amortization gap. To close the amortization gap and improve the training of the generative model, recent works have introduced an additional refinement step that applies stochastic variational inference (SVI) to improve upon the variational parameters returned by the amortized inference model. In this paper, we propose the Buffered Stochastic Variational Inference (BSVI), a new refinement procedure that makes use of SVI’s sequence of intermediate variational proposal distributions and their corresponding importance weights to construct a new generalized importance-weighted lower bound. We demonstrate empirically that training the variational autoencoders with BSVI consistently out-performs SVI, yielding an improved training procedure for VAEs.

[1]  Sanjiv Kumar,et al.  On the Convergence of Adam and Beyond , 2018 .

[2]  Max Welling,et al.  VAE with a VampPrior , 2017, AISTATS.

[3]  Matthew D. Hoffman,et al.  On the challenges of learning with inference networks on sparse, high-dimensional data , 2017, AISTATS.

[4]  David Duvenaud,et al.  Inference Suboptimality in Variational Autoencoders , 2018, ICML.

[5]  Xi Chen,et al.  PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications , 2017, ICLR.

[6]  Noah D. Goodman,et al.  Amortized Inference in Probabilistic Reasoning , 2014, CogSci.

[7]  Volodymyr Kuleshov,et al.  Deep Hybrid Models: Bridging Discriminative and Generative Approaches , 2017 .

[8]  Justin Domke,et al.  Importance Weighting and Variational Inference , 2018, NeurIPS.

[9]  Martin A. Riedmiller,et al.  Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images , 2015, NIPS.

[10]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[11]  Mohammad Ghavamzadeh,et al.  Bottleneck Conditional Density Estimation , 2016, ICML.

[12]  Alexander A. Alemi,et al.  Fixing a Broken ELBO , 2017, ICML.

[13]  Max Welling,et al.  Semi-supervised Learning with Deep Generative Models , 2014, NIPS.

[14]  Ole Winther,et al.  Ladder Variational Autoencoders , 2016, NIPS.

[15]  Alexander M. Rush,et al.  Semi-Amortized Variational Autoencoders , 2018, ICML.

[16]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[17]  Yisong Yue,et al.  Iterative Amortized Inference , 2018, ICML.

[18]  Ali Ghodsi,et al.  Robust Locally-Linear Controllable Embedding , 2017, AISTATS.

[19]  David Duvenaud,et al.  Reinterpreting Importance-Weighted Autoencoders , 2017, ICLR.

[20]  Roger B. Grosse,et al.  Isolating Sources of Disentanglement in Variational Autoencoders , 2018, NeurIPS.

[21]  David Vázquez,et al.  PixelVAE: A Latent Variable Model for Natural Images , 2016, ICLR.

[22]  Max Welling,et al.  Improved Variational Inference with Inverse Autoregressive Flow , 2016, NIPS 2016.

[23]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[24]  Zhe Gan,et al.  Variational Autoencoder for Deep Learning of Images, Labels and Captions , 2016, NIPS.

[25]  Mykel J. Kochenderfer,et al.  Amortized Inference Regularization , 2018, NeurIPS.

[26]  Ruslan Salakhutdinov,et al.  Importance Weighted Autoencoders , 2015, ICLR.

[27]  Stefano Ermon,et al.  InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations , 2017, NIPS.

[28]  Chong Wang,et al.  Stochastic variational inference , 2012, J. Mach. Learn. Res..

[29]  Stefano Ermon,et al.  A Lagrangian Perspective on Latent Variable Generative Models , 2018, UAI.

[30]  Yee Whye Teh,et al.  Tighter Variational Bounds are Not Necessarily Better , 2018, ICML.

[31]  Samy Bengio,et al.  Generating Sentences from a Continuous Space , 2015, CoNLL.