The Algebra and Combinatorics of Shuffles and Multiple Zeta Values
暂无分享,去创建一个
[1] K. O. Friedrichs,et al. MATHEMATICAL ASPECTS OF THE QUANTUM THEORY OF FIELDS. PART 5. FIELDS MODIFIED BY LINEAR HOMOGENEOUS FORCES , 1953 .
[2] W. Magnus. On the exponential solution of differential equations for a linear operator , 1954 .
[3] I. E. Segal. Review: K. O. Friedrichs, Mathematical aspects of the quantum theory of fields , 1954 .
[4] Kuo-Tsai Chen,et al. Iterated Integrals and Exponential Homomorphisms , 1954 .
[5] Kurt Friedrichs,et al. Mathematical Aspects of the Quantum Theory of Fields , 1954 .
[6] R. C. Lyndon. A theorem of Friedrichs. , 1955 .
[7] R. Ree,et al. Lie Elements and an Algebra Associated With Shuffles , 1958 .
[8] Kuo-Tsai Chen,et al. Algebras of iterated path integrals and fundamental groups , 1971 .
[9] David E. Radford,et al. A natural ring basis for the shuffle algebra and an application to group schemes , 1979 .
[10] D. Zagier. Values of Zeta Functions and Their Applications , 1994 .
[11] Anthony Joseph,et al. First European Congress of Mathematics , 1994 .
[12] Jonathan M. Borwein,et al. Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k , 1996, Electron. J. Comb..
[13] Jonathan M. Borwein,et al. Combinatorial Aspects of Multiple Zeta Values , 1998, Electron. J. Comb..
[14] A. Goncharov,et al. Multiple polylogarithms, cyclotomy and modular complexes , 2011, 1105.2076.
[15] Yasuo Ohno,et al. A Generalization of the Duality and Sum Formulas on the Multiple Zeta Values , 1999 .
[16] Jonathan M. Borwein,et al. Special values of multiple polylogarithms , 1999, math/9910045.
[17] Michel Petitot,et al. Lyndon words, polylogarithms and the Riemann Zeta function , 2000, Discret. Math..
[18] Michael E. Hoffman,et al. Relations of multiple zeta values and their algebraic expression , 2000 .
[19] David M. Bradley,et al. Resolution of Some Open Problems Concerning Multiple Zeta Evaluations of Arbitrary Depth , 2003, Compositio Mathematica.