The Algebra and Combinatorics of Shuffles and Multiple Zeta Values

The algebraic and combinatorial theory of shuffles, introduced by Chen and Ree, is further developed and applied to the study of multiple zeta values. In particular, we establish evaluations for certain sums of cyclically generated multiple zeta values. The boundary case of our result reduces to a former conjecture of Zagier.

[1]  K. O. Friedrichs,et al.  MATHEMATICAL ASPECTS OF THE QUANTUM THEORY OF FIELDS. PART 5. FIELDS MODIFIED BY LINEAR HOMOGENEOUS FORCES , 1953 .

[2]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[3]  I. E. Segal Review: K. O. Friedrichs, Mathematical aspects of the quantum theory of fields , 1954 .

[4]  Kuo-Tsai Chen,et al.  Iterated Integrals and Exponential Homomorphisms , 1954 .

[5]  Kurt Friedrichs,et al.  Mathematical Aspects of the Quantum Theory of Fields , 1954 .

[6]  R. C. Lyndon A theorem of Friedrichs. , 1955 .

[7]  R. Ree,et al.  Lie Elements and an Algebra Associated With Shuffles , 1958 .

[8]  Kuo-Tsai Chen,et al.  Algebras of iterated path integrals and fundamental groups , 1971 .

[9]  David E. Radford,et al.  A natural ring basis for the shuffle algebra and an application to group schemes , 1979 .

[10]  D. Zagier Values of Zeta Functions and Their Applications , 1994 .

[11]  Anthony Joseph,et al.  First European Congress of Mathematics , 1994 .

[12]  Jonathan M. Borwein,et al.  Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k , 1996, Electron. J. Comb..

[13]  Jonathan M. Borwein,et al.  Combinatorial Aspects of Multiple Zeta Values , 1998, Electron. J. Comb..

[14]  A. Goncharov,et al.  Multiple polylogarithms, cyclotomy and modular complexes , 2011, 1105.2076.

[15]  Yasuo Ohno,et al.  A Generalization of the Duality and Sum Formulas on the Multiple Zeta Values , 1999 .

[16]  Jonathan M. Borwein,et al.  Special values of multiple polylogarithms , 1999, math/9910045.

[17]  Michel Petitot,et al.  Lyndon words, polylogarithms and the Riemann Zeta function , 2000, Discret. Math..

[18]  Michael E. Hoffman,et al.  Relations of multiple zeta values and their algebraic expression , 2000 .

[19]  David M. Bradley,et al.  Resolution of Some Open Problems Concerning Multiple Zeta Evaluations of Arbitrary Depth , 2003, Compositio Mathematica.