Chance-constrained cost efficiency in data envelopment analysis model with random inputs and outputs

Data envelopment analysis (DEA) is a well-known non-parametric technique primarily used to estimate radial efficiency under a set of mild assumptions regarding the production possibility set and the production function. The technical efficiency measure can be complemented with a consistent radial metrics for cost, revenue and profit efficiency in DEA, but only for the setting with known input and output prices. In many real applications of performance measurement, such as the evaluation of utilities, banks and supply chain operations, the input and/or output data are often stochastic and linked to exogenous random variables. It is known from standard results in stochastic programming that rankings of stochastic functions are biased if expected values are used for key parameters. In this paper, we propose economic efficiency measures for stochastic data with known input and output prices. We transform the stochastic economic efficiency models into a deterministic equivalent non-linear form that can be simplified to a deterministic programming with quadratic constraints. An application for a cost minimizing planning problem of a state government in the US is presented to illustrate the applicability of the proposed framework.

[1]  H. B. Valami Cost efficiency with triangular fuzzy number input prices: An application of DEA , 2009 .

[2]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[3]  T. Coelli Estimators and hypothesis tests for a stochastic frontier function: A Monte Carlo analysis , 1995 .

[4]  Timo Kuosmanen,et al.  Nonparametric Efficiency Analysis under Price Uncertainty: A First-Order Stochastic Dominance Approach , 2002 .

[5]  Efthymios G. Tsionas,et al.  A Bayesian approach to statistical inference in stochastic DEA , 2010 .

[6]  Subhash C. Ray,et al.  Input Price Variation Across Locations and a Generalized Measure of Cost Efficiency , 2008 .

[7]  Abraham Charnes,et al.  Programming with linear fractional functionals , 1962 .

[8]  Toshiyuki Sueyoshi,et al.  Stochastic DEA for restructure strategy: an application to a Japanese petroleum company , 2000 .

[9]  Desheng Dash Wu,et al.  Stochastic DEA with ordinal data applied to a multi-attribute pricing problem , 2010, Eur. J. Oper. Res..

[10]  A. Mas-Colell,et al.  Microeconomic Theory , 1995 .

[11]  Srinivas Talluri,et al.  Vendor Performance With Supply Risk: A Chance-Constrained DEA Approach , 2006 .

[12]  A. U.S.,et al.  Measuring the efficiency of decision making units , 2003 .

[13]  Timo Kuosmanen,et al.  Measuring economic efficiency with incomplete price information , 2003, Eur. J. Oper. Res..

[14]  N. Petersen,et al.  Chance constrained efficiency evaluation , 1995 .

[15]  A. Charnes,et al.  Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints , 1963 .

[16]  Kenneth C. Land,et al.  Chance‐constrained data envelopment analysis , 1993 .

[17]  V. Charles,et al.  Stochastic simulation based genetic algorithm for chance constrained data envelopment analysis problems , 2011 .

[18]  William W. Cooper,et al.  Chapter 13 Satisficing DEA models under chance constraints , 1996, Ann. Oper. Res..

[19]  Russell G. Thompson,et al.  Computing DEA/AR efficiency and profit ratio measures with an illustrative bank application , 1996, Ann. Oper. Res..

[20]  O. Olesen Comparing and Combining Two Approaches for Chance Constrained DEA , 2006 .

[21]  Risto Lahdelma,et al.  SMAA-2: Stochastic Multicriteria Acceptability Analysis for Group Decision Making , 2001, Oper. Res..

[22]  William W. Cooper,et al.  Measures of inefficiency in data envelopment analysis and stochastic frontier estimation , 1997 .

[23]  William W. Cooper,et al.  Chance constrained programming approaches to technical efficiencies and inefficiencies in stochastic data envelopment analysis , 2002, J. Oper. Res. Soc..

[24]  Baoding Liu,et al.  Uncertain Programming , 1999 .

[25]  R. Färe,et al.  The measurement of efficiency of production , 1985 .

[26]  William W. Cooper,et al.  Stochastics and Statistics , 2001 .

[27]  Alireza Amirteimoori,et al.  An improvement to the cost efficiency interval: A DEA-based approach , 2006, Appl. Math. Comput..

[28]  Risto Lahdelma,et al.  Stochastic multicriteria acceptability analysis using the data envelopment model , 2006, Eur. J. Oper. Res..

[29]  G. Battese,et al.  Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India , 1992 .

[30]  Lennart Hjalmarsson,et al.  Deterministic parametric and nonparametric estimation of efficiency in service production: A comparison , 1990 .

[31]  Adel Hatami-Marbini,et al.  A new chance-constrained DEA model with birandom input and output data , 2014, J. Oper. Res. Soc..

[32]  P. Kline Models of man , 1986, Nature.

[33]  Adel Hatami-Marbini,et al.  Chance-constrained DEA models with random fuzzy inputs and outputs , 2013, Knowl. Based Syst..

[34]  Ali Emrouznejad,et al.  COOPER-framework: A unified process for non-parametric projects , 2010, Eur. J. Oper. Res..

[35]  Ole Bent Olesen,et al.  Stochastic Data Envelopment Analysis - A review , 2016, Eur. J. Oper. Res..

[36]  Ali Emrouznejad,et al.  Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years , 2008 .

[37]  W. Cooper,et al.  Chance Constrained Programming Formulations for Stochastic Characterizations of Efficiency and Dominance in DEA , 1998 .

[38]  Patrizia Beraldi,et al.  Probabilistically constrained models for efficiency and dominance in DEA , 2009 .

[39]  R. G. Dyson,et al.  Cost efficiency measurement with price uncertainty: a DEA application to bank branch assessments , 2005, Eur. J. Oper. Res..

[40]  H. Simon,et al.  Models of Man. , 1957 .

[41]  A. Mostafaee,et al.  Cost efficiency measures in data envelopment analysis with data uncertainty , 2010, Eur. J. Oper. Res..

[42]  J. Paradi,et al.  Best practice analysis of bank branches: An application of DEA in a large Canadian bank , 1997 .

[43]  Timo Kuosmanen,et al.  Measuring economic efficiency with incomplete price information: With an application to European commercial banks , 2001, Eur. J. Oper. Res..

[44]  Lei Fang,et al.  Duality and efficiency computations in the cost efficiency model with price uncertainty , 2013, Comput. Oper. Res..

[45]  Adel Hatami-Marbini,et al.  Fuzzy stochastic data envelopment analysis with application to base realignment and closure (BRAC) , 2012, Expert Syst. Appl..

[46]  Lawrence M. Seiford,et al.  CHARACTERISTICS ON STOCHASTIC DEA EFFICIENCY : RELIABILITY AND PROBABILITY BEING EFFICIENT , 1999 .

[47]  Lawrence M. Seiford,et al.  Data envelopment analysis (DEA) - Thirty years on , 2009, Eur. J. Oper. Res..

[48]  A. Mostafaee,et al.  A simplified version of the DEA cost efficiency model , 2008, Eur. J. Oper. Res..

[49]  Kaoru Tone,et al.  A slacks-based measure of super-efficiency in data envelopment analysis , 2001, Eur. J. Oper. Res..

[50]  John S. Liu,et al.  A survey of DEA applications , 2013 .

[51]  Zhimin Huang,et al.  Dominance stochastic models in data envelopment analysis , 1996 .

[52]  Lei Fang,et al.  A comment on "cost efficiency in data envelopment analysis with data uncertainty" , 2012, Eur. J. Oper. Res..

[53]  Ali Emrouznejad,et al.  A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016 , 2018 .

[54]  Robert G. Dyson,et al.  A generalisation of the Farrell cost efficiency measure applicable to non-fully competitive settings , 2008 .

[55]  Risto Lahdelma,et al.  SMAA - Stochastic multiobjective acceptability analysis , 1998, Eur. J. Oper. Res..

[56]  A. Charnes,et al.  Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis , 1984 .