Association of ITGAX and ITGAM gene polymorphisms with susceptibility to IgA nephropathy

[1]  A. Erdei,et al.  Non-identical twins: Different faces of CR3 and CR4 in myeloid and lymphoid cells of mice and men. , 2017, Seminars in cell & developmental biology.

[2]  Guoyuan Lu,et al.  Increased C4 and decreased C3 levels are associated with a poor prognosis in patients with immunoglobulin A nephropathy: a retrospective study , 2017, BMC Nephrology.

[3]  Manolis Kellis,et al.  HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease , 2015, Nucleic Acids Res..

[4]  M. Daha,et al.  Role of complement in IgA nephropathy , 2015, Journal of Nephrology.

[5]  S. Chew,et al.  Identification of new susceptibility loci for IgA nephropathy in Han Chinese , 2015, Nature Communications.

[6]  J. Barratt,et al.  The Genetics of IgA Nephropathy: An Overview from Western Countries , 2015, Kidney Diseases.

[7]  D. Bang,et al.  CD11a, CD11c, and CD18 gene polymorphisms and susceptibility to Behçet's disease in Koreans. , 2014, Tissue antigens.

[8]  Murim Choi,et al.  Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens , 2014, Nature Genetics.

[9]  T. Vyse,et al.  Resequencing the susceptibility gene, ITGAM, identifies two functionally deleterious rare variants in systemic lupus erythematosus cases , 2014, Arthritis Research & Therapy.

[10]  Zhi-Hong Liu Nephrology in China , 2013, Nature Reviews Nephrology.

[11]  C. Lau,et al.  The CD11b-integrin (ITGAM) and systemic lupus erythematosus , 2013, Lupus.

[12]  S. Akira,et al.  Microbe-dependent CD11b+ IgA+ plasma cells mediate robust early-phase intestinal IgA responses in mice , 2013, Nature Communications.

[13]  M. Daha,et al.  Deposition of IgA in primary IgA nephropathy: it takes at least four to tango. , 2013, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[14]  Eurie L. Hong,et al.  Annotation of functional variation in personal genomes using RegulomeDB , 2012, Genome research.

[15]  Sampath Prahalad,et al.  Evaluation of genetic association between an ITGAM non-synonymous SNP (rs1143679) and multiple autoimmune diseases. , 2012, Autoimmunity reviews.

[16]  Wei Wang,et al.  A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy , 2011, Nature Genetics.

[17]  Loreto Gesualdo,et al.  Genome-wide association study identifies susceptibility loci for IgA nephropathy , 2011, Nature Genetics.

[18]  P. Cawthon,et al.  Non-immunosuppressive treatment for IgA nephropathy. , 2011, The Cochrane database of systematic reviews.

[19]  Andre Franke,et al.  SNPexp - A web tool for calculating and visualizing correlation between HapMap genotypes and gene expression levels , 2010, BMC Bioinformatics.

[20]  S. Heath,et al.  HLA has strongest association with IgA nephropathy in genome-wide analysis. , 2010, Journal of the American Society of Nephrology : JASN.

[21]  Xilin Yang,et al.  Genetic variants of the protein kinase C-beta 1 gene and development of end-stage renal disease in patients with type 2 diabetes. , 2010, JAMA.

[22]  T. Häupl,et al.  CD11c as a Transcriptional Biomarker to Predict Response to Anti‐TNF Monotherapy With Adalimumab in Patients With Rheumatoid Arthritis , 2010, Clinical pharmacology and therapeutics.

[23]  Jack A. Taylor,et al.  SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies , 2009, Nucleic Acids Res..

[24]  Geoffrey Hom,et al.  Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. , 2008, The New England journal of medicine.

[25]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[26]  Yufang Shi,et al.  CD11b facilitates the development of peripheral tolerance by suppressing Th17 differentiation , 2007, The Journal of experimental medicine.

[27]  P. Bork,et al.  Human non-synonymous SNPs: server and survey. , 2002, Nucleic acids research.

[28]  P. Gaehtgens,et al.  A role for β2 integrins (CD11/CD18) in the regulation of cytokine gene expression of polymorphonuclear neutrophils during the inflammatory response , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[29]  T. Mayadas,et al.  Human Immunoglobulin A Receptor (FcRI, CD89) Function in Transgenic Mice Requires Both FcR γ Chain and CR3 (CD11b/CD18) , 1999 .

[30]  K. Abe,et al.  Intercellular adhesion molecule-1/leukocyte function associated antigen-1-mediated and complement receptor type 4-mediated infiltration and activation of glomerular immune cells in immunoglobulin A nephropathy. , 1996, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[31]  N. Hogg,et al.  Neutrophil and monocyte cell surface p150,95 has iC3b-receptor (CR4) activity resembling CR3. , 1988, The Journal of clinical investigation.

[32]  J. Novak,et al.  IgA nephropathy , 2016, Nature Reviews Disease Primers.

[33]  B. Kwon,et al.  CD11c+CD8+ T cells: two-faced adaptive immune regulators. , 2010, Cellular immunology.

[34]  T. Mayadas,et al.  Human immunoglobulin A receptor (FcalphaRI, CD89) function in transgenic mice requires both FcR gamma chain and CR3 (CD11b/CD18). , 1999, Blood.

[35]  K. Abe,et al.  Mechanism of infiltration and activation of glomerular monocytes/macrophages in IgA nephropathy. , 1997, American journal of nephrology.

[36]  P. Zucchelli,et al.  [IgA nephropathy]. , 1985, Medicina clinica.